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Preface
In the Name of GOD

The increasing development of human societies in various fields is gaining momen-
tum every day. To overcome and control this increasing growth, the need for advanced
methods of modeling different phenomena becomes doubly important. Most experimen-
tal phenomena have a series of dependent and independent variables. Discovering and
modeling the dependence of these variables has a vital role in a better and fact-based
understanding of those phenomena. Statistical sciences and new methods of data sci-
ence play a key role in this regard and promote interdisciplinary collaboration. Spatial
statistics is a powerful tool, which examines their correlations by analyzing spatial and
temporal data. With this in mind, spatial statistics methods can be used in a wide
range of areas. Including Earthquake Science and Engineering, Risk Engineering, Crisis
Management, Atmospheric and Meteorological Sciences, Water Resources, Environment,
Geology, Mining, Urban and Regional Planning, Traffic, Transportation, Remote Sensing,
Health and Treatment, epidemiology, forensics, social sciences, oil and gas, economics, and
insurance have a wide range of applications. To provide opportunities for the exchange of
views of experts in various related fields to spatial statistics, the Fifth Seminar on Spatial
Statistics and Its Applications, to be held from 25 to 26 October 2023, is hosted by the
International University of Imam Khomeini in collaboration the Centre of Excellence in
Analysis of Spatio-Temporal Correlated Data Tarbiat Modares University and the Iranian
Statistical Society will be held. This seminar provides a unique opportunity for academics,
professionals, government agencies, the private sector and other institutions active in re-
lated fields to exchange views and present the results of their research by presenting the
latest scientific achievements. Thanks to the esteemed experts from inside and outside
the country in various fields who contribute to the scientific fruitfulness of this seminar
by presenting their valuable articles and the respected referees, scientific committee, and
executive committee who took great efforts to hold this seminar. We hope that with
your active presence and participation in this seminar, it will be possible to achieve its
predicted goals like the previous successful seminars.

Secretary of the Scientific Committee
Professor Mohsen Mohammadzadeh

October 2023
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Determining the Anisotropic Spatial Correlation of Vs30 Values
in Tehran

Morteza Abbasnejad Fard∗, Morteza Bastami
International Institute of Earthquake Engineering and Seismology, Tehran, Iran.

Abstract:
Spatial correlation and cross-correlation of earthquake intensity measures (IMs) are

essential for seismic hazard and risk assessment of spatially distributed assets, such as port-
folios of buildings or infrastructure networks. Recent studies have shown that the spatial
correlation characteristics of local soil conditions, represented by the average shear-wave
velocity in the upper 30 m of soil (Vs30), significantly impact the spatial correlations of
earthquake IMs. This study aims to analyze the spatial correlation characteristics of the
soil profile in the Tehran region by collecting accurate Vs30 measurements and obtaining
the parameters of a multivariate anisotropic spatial correlation model of earthquake IMs
for seismic hazard and risk assessment applications in Tehran.

Keywords: Spatial correlations, Earthquake, Latent dimensions, Anisotropy.
Mathematics Subject Classification (2010): 62P30, 62N01, 62H11.

1 Introduction

Vs30 is the time-averaged shear-wave velocity in the upper 30 m of soil, which is a key
measure to characterize the site response and classify the site conditions. Vs30 values are
not constant over a large area but vary spatially due to the heterogeneity of the soil layers
and the topography. It is necessary to account for the spatial correlation of Vs30 values
when estimating the ground motion IMs at different locations, especially for large-scale
urban areas prone to earthquakes. Ignoring the spatial correlation of earthquake intensity
measures (IM) and Vs30 values can lead to unrealistic loss estimation and inaccurate re-
silience assessment, as well as increased uncertainty and variability in the ground motion

∗Speaker: m.abbasnejad@iiees.ac.ir
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Spatial correlation model of Tehran Vs30 2

IMs Abbasnejadfard et al. (2021a,b). Several studies have proposed different methods to
model the spatial correlation of Vs30 values, such as geostatistical methods, proxy-based
methods, and latent dimensions methods. Recently developed methods (e.g., Abbasne-
jadfard et al. (2020)) can also capture the anisotropy of the spatial correlation, which
means that the correlation depends on the direction and the distance between two loca-
tions. Anisotropy is another critical factor that should be considered in spatial correlation
modelling of earthquake IMs, as it can affect the results significantly. Abbasnejadfard et
al. (2019) developed a latent dimensions method to model the anisotropic spatial correla-
tion of earthquake IMs, which relies on the anisotropic spatial correlation characteristics
of Vs30 values in the target region. To apply this method in Tehran, the capital city
of Iran, this study collected measured Vs30 values within and around the boundaries of
Tehran and analyzed the spatial correlation properties of the Vs30 random field in the
area. The parameters of the latent dimensions model for the anisotropic spatial correla-
tion of earthquake IMs in the region were obtained, which can be used for further spatially
correlated seismic hazard and risk assessment of the buildings and infrastructure networks
in Tehran metropolitan area.

2 Application of the Latent Dimensions Method

Apanasovich and Genton (2010) proposed an innovative approach based on the latent di-
mensions method based on existing covariance models of univariate random fields to define
closed-form cross-covariance function. The key idea is to represent a vectors components
as points in k dimensional space and convert a multivariate problem to a multidimen-
sional univariate one. In this regard, each component α of a multivariate random field
ε′(s) considered as a point of univariate random field in k dimensional space. Based on
these latent dimensions, Cαβ(s1, s2) : s1, s2 ∈ Rn becomes as C ((s1, ξα) , (s2, ξβ)), a co-
variance of a univariate random field which its arguments are from Rn+k space instead
of Rn. In the case of the current study, n equals 2 (because data have been recorded
in 2-dimensional space), and k is considered as 1, so a 2-dimensional three-variate ran-
dom field of normalized intra-event residuals of PGA, PGV and PGD is represented as
a 3-dimensional univariate random field. Consequently, using valid covariance models
of univariate random fields, the covariance matrix is guaranteed to be non-negative defi-
nite. The current study implements the cross-covariance function form of equation (2.1)
proposed by Apanasovich and Genton (2010) based on the latent dimension method.

Cαβ(h) = C(h, υαβ − Γξh) = σαβ

|υαβ − γωTh| + 1
exp

{
− a ∥h∥

(|υαβ − γωTh| + 1)1/2

}
, (2.1)
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where α, β = 1, 2, 3 represent ε′
P GA, ε′

P GV and ε′
P GD, normalized intra-event residuals

of PGA, PGV and PGD respectively which are the components of multivariate random
field in original space, ḩ = si − sj is relative position vector of points i and j, σαβ is
variance parameter and ωT = {ω1, ω2}T is a 2-dimensional vector such that ωTω = 1. In
this equation, arctan(ω2/ω1) shows the anisotropy direction and γ ≥ 0 defines anisotropy
ratio. Normalized intra-events residuals are defined as (2.2) assuming that the standard
deviation of intra-event residuals are independent of location (Jayaram and Baker, 2009;
Du and Wang, 2013; Garakaninezhad and Bastami, 2017) and consequently they have
unite standard deviation.

ε′
ij = εij

σ
= ln(Yij) − ln(Yij)

σ
(2.2)

Instead of using latent dimension,ξ1 = {ξ11, ξ12, ξ13}T it is possible to treat with latent
distances υαβ = ξ1α − ξ1β, α, β = 1, 2, 3. The larger latent distance υαβ indicates the
smaller cross-correlation between components α and β. The vector ω and the parameter γ
determine the anisotropy direction and anisotropy extend (ratio), respectively. Moreover,
the latent distance parameter υ determines the correlation between different components
(variable), so a larger value of υ shows a more negligible correlation. In this regard, υ
equals to 0 for marginal-covariance models.

According to the Abbasnejadfard et al. (2020), the anisotropy ratio and anisotropy
direction in the model mentioned above are directly affected by the anisotropy ratio and
anisotropy direction of the random field of the Vs30 values in the region. For this reason,
the following sections are dedicated to investigating these parameters.

3 Description of Collected Data
VS30 values of the 158 sample points within the study area and an area with a distance of
about 17 km from the study area’s borders are selected for the statistical investigations.
Figure 1 demonstrates the location of the sample points in the study area and its vicinity.
The box plot and histogram of the collected data are also presented in Figure 1. Moreover,
the statistical characteristics of the observations are provided in Table 1.

Hainings method is used to identify the outlier observations. In this regard, the
observation that satisfies one of the inequalities of equation (3.1) is considered an outlier
and excluded from the collected observations.

Z(s) < QL − 1.5 (QU −QL) , Z(s) > QL + 1.5 (QU −QL) (3.1)

In (3.1), Z(s) is the observed value at location s, QL is the lower quartile, and QU is
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Table 1: Geometric parameters of the seismic source

Statistical Characteristic Value
Number 158
Mean (m/s) 517.2
Standard Deviation (m/s) 166.4
Minimum (m/s) 187.0
Lower Quartile (m/s) 388.0
Median (m/s) 512.0
Upper Quartile (m/s) 634.0
Maximum (m/s) 1236.0
Interquartile Range (m/s) 246.0

the upper quartile of observations. Using equation (3.1), one of the observations with
a VS30 value equal to 1236 m/s is considered as outlier data and excluded from the
observations. To examine the stationarity of the data in terms of mean values, scatter

Figure 1: Location, Box plot and histogram of the collected sample points

plots of the observed data are drawn versus the relative distances between locations in the
east-west (X) and north-south (Y) directions. Figure 2 demonstrates that the data have
considerable trends in both directions, and the north-south trend is more significant than
the trend in the east-west direction. In order to reduce the adverse effects of the existing
trend on the estimation of the variables and predictors, it is necessary to remove trends
from the data. The trend model is first determined using the linear regression approach
in this context. Subtracting the modeled trend value from the observed value at each
location provides the residual, also known as the detrended data. Figure 2 depicts the
scatter plots of the detrended data versus the relative distances between locations in the
east-west and north-south directions. Moreover, the histogram of the detrended data is
presented in Figure 3. According to this figure, detrended VS30 values follow a normal
distribution. In order to further investigate the normality of the detrended data, the Q-Q
plot of Figure 3 is presented. According to this figure, the detrended VS30 values are
symmetric and follow the normal distribution with a good approximation. Considering
the results presented in Figures 2 through 3, it can be concluded that the random field of
the detrended VS30 values in the study area is Gaussian and stationary.
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Figure 2: Scatter plot of the observed VS30 values (top) and detrended data (bottom)
versus the relative distances between locations in the east-west and north-south directions

Figure 3: Histogram and Q-Q plot of detrended data

4 Determining the Bivariate Covariogram Function

In order to capture the anisotropic spatial correlation characteristics of random fields, it is
possible to use valid bivariate semivariogram (or covariogram) functions. These types of
functions lead us to a valid covariance matrix (a positive semi-definite matrix with valid
Cholesky decomposition). See Abbasnejadfard et al. (2020) for more details. The current
research work uses the covariogram function of equation (4.1), which was also utilized by
Abbasnejadfard et al. (2019) and adapted from Apanasovich and Genton (2010).

C(h) = σ

|γωTh| + 1
exp

{
− a ∥h∥

(|γωTh| + 1)1/2

}
(4.1)



Spatial correlation model of Tehran Vs30 6

In equation (4.1), h = si − sj is the distance vector of points i and i, σ represents the
covariance value at h = 0, which is equal to the nugget value of the semivariogram
models, γ ≥ 0 is a parameter that includes the effects of anisotropy ratio, ωT = {ω1, ω2}T

is a 2-dimensional vector that determines the anisotropy direction, and a is the range
parameter. In order to obtain the mentioned parameters for the random field of VS30
values in Tehran, first, the empirical covariogram values of the normalized detrended VS30
values are calculated for different directions and distances using the gstat package of the
R programming language. Then, the nonlinear least square regression with the least

Figure 4: The fitted covariogram function

absolute residuals (LAR) method and the Trust-Reagion algorithm is utilized to fit the
equation (4.1) to the calculated empirical covariogram values. The visual representation
of the fitted covariogram function is shown in Figure 4. Moreover, the model parameters
and coefficient of determination are presented in Table 2.

Table 2: Geometric parameters of the seismic source

σ a γ ωT R2

0.96 0.204 0.689 [0.92, 0.39] 0.794

5 Estimation of the Parameters

By obtaining the characteristics of the anisotropic spatial correlations of the VS30 val-
ues, it would be possible to employ the latent dimensions (LD) method, proposed by
Abbasnejadfard et al. (2020), to calculate the anisotropic spatially correlated seismic
hazard in the considered study are. According to the LD method, the marginal- and
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cross-covariance functions of equations (5.1) and (5.2) should be used.

Cαα(h) = 1
|γωTh| + 1

exp
{

− a ∥h∥
(|γωTh| + 1)1/2

}
(5.1)

Cαβ(h) = 1
|υαβ − γωTh| + 1

exp
{

− a ∥h∥
(|υαβ − γωTh| + 1)1/2

}
(5.2)

In equations (5.1) and (5.2), α and β determine the earthquake intensity measures, υ is
known as the latent distance value, and other parameters are defined under (2.1). The
parameters of equations (5.1) and (5.2) (a, γ, ω, and υ) for different combinations of
earthquake intensity measures are provided in Table 3. The values provided in the men-
tioned tables can be used to conduct anisotropic spatially correlated earthquake hazard
assessment in the Tehran region using the LD method. More details about the calculation
of these parameters based on the characteristics of anisotropic spatial correlations of local
VS30 values are presented in Abbasnejadfard et al. (2020).

Table 3: Geometric parameters of the seismic source

Model 5 Model 6
α a γ ωT β a γ ωT

PGA 1.751 0.572 [0.92, 0.39] PGV 1.751 0.572 [0.92, 0.39]
PGA 2.001 0.937 [0.92, 0.39] PGD 2.001 0.937 [0.92, 0.39]
PGV 2.472 0.565 [0.92, 0.39] PGD 2.472 0.565 [0.92, 0.39]
SA(T=0.5s) 2.212 1.130 [0.92, 0.39] SA(T=1s) 2.212 1.130 [0.92, 0.39]
SA(T=0.5s) 2.212 0.744 [0.92, 0.39] SA(T=2s) 2.212 0.744 [0.92, 0.39]
SA(T=1s) 2.472 0.503 [0.92, 0.39] SA(T=2s) 2.472 0.503 [0.92, 0.39]

Discussion and Results

This study focuses on collecting measured Vs30 values in Tehran and analyzing their spa-
tial correlation characteristics. A total of 158 Vs30 values in Tehran are collected for
this purpose. The analysis shows that the Vs30 values can be regarded as a realization
of a non-stationary anisotropic random field with an anisotropic range of 1.45 and an
anisotropy direction aligned with approximately the North-South direction. Furthermore,
an anisotropic covariogram model is fitted to the data and its parameters are estimated.
Based on the parameters of the anisotropic covariogram model, the parameters of the
multivariate anisotropic spatial correlation model of earthquake intensity measures pro-
posed by Abbasnejadfard et al. (2020) are obtained, which enable conducting spatially
correlated seismic hazard and risk assessment in Tehran region.
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Enhancing Suicide Mortality Prediction Using Spatially
Informed Random Forest Models: A Comparative Study with

Spatial Econometrics

Mohadeseh Alsadat Farzammehr∗

Judiciary Research Institute, Tehran, Iran.

Abstract:
Amidst the growing adoption of novel machine learning techniques like random forest,

grasping the significance of spatial factors within these models is pivotal. This study intro-
duces an innovative approach, crafting spatially informed classification random forest mod-
els by integrating spatially lagged variables, mirroring diverse spatial panel data econo-
metric frameworks. Our investigation rigorously compares these models to traditional
spatial and non-spatial regression methods in predicting suicide mortality rates across
Iran’s provinces from 2011 to 2022. Outcomes reveal a nuanced edge of spatial econo-
metric models over random forest counterparts. Remarkably, the optimal spatial random
forest model, infused with spatial lag parameters, attains an impressive 89.19% predic-
tive accuracy for suicide mortality levels, surpassing both spatial econometric (46.51%)
and non-spatial random forest (27.03%) models. Despite these variances, our conclusion
underscores that random forest methods don’t surpass traditional spatial econometric
models in predicting suicide mortality rates. These findings offer vital insights into spa-
tial considerations within predictive modeling, guiding researchers towards apt choices for
spatial data analysis models.

Keywords: Court performance prediction; Data mining; Judicial data; Machine learning
techniques; Artificial intelligence.
Mathematics Subject Classification (2010): 6207, 62H30, 62H11.

∗Speaker: m-farzammehr@jri.ac.ir
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1 Introduction
Suicide mortality poses a pressing public health challenge that reverberates across various
societal realms. Tackling this issue necessitates accurate predictive models for timely in-
terventions and resource allocation. Amid the emergence of machine learning techniques,
such as random forest, their potential becomes evident in handling intricate datasets. How-
ever, these techniques often disregard spatial dimensions crucial for deciphering nuanced
geographic patterns in suicide rates and risk factors.

Conventional machine learning models in spatial contexts can obscure underlying re-
lationships, particularly when spatial interactions are pivotal. Spatial econometrics steps
in to grapple with complexities tied to spatial data. Nevertheless, a comparative analy-
sis between spatial econometrics and machine learning, such as random forest, remains
elusive.

This study pioneers an innovative fusion, harnessing the strengths of spatial econo-
metrics and random forest. We craft novel spatially informed classification random forest
models, seamlessly integrating spatial lagged variables to mirror the structures of spa-
tial panel data econometrics. Our assessment comprehensively contrasts these hybrids
with spatial econometrics and non-spatial regression. Importantly, we predict suicide rate
categories across Iran’s provinces from 2011 to 2022.

The research centers around two pivotal questions: a comparison between predictive
random forest and spatial econometrics, and an exploration of spatially explicit random
forest’s potential to surpass conventional methods in suicide rate prediction. Unravel-
ing these inquiries offers insights into the synergy between machine learning and spatial
econometrics, providing guidance for model selection in spatial data analysis, particularly
in the realm of suicide prediction. In essence, this paper seamlessly integrates the ur-
gency of addressing suicide concerns with state-of-the-art predictive analytics and spatial
insights. Through a skillful amalgamation of spatial econometrics and random forest, our
study heralds a new era of informed predictive modeling. It provides a guiding beacon for
researchers and policymakers, ushering in an era of heightened spatially conscious data
analysis.

2 Data Collection and Preparation
Iran’s suicide data originates from the Iranian Forensic Medicine Organization (IFMO),
an entity under the Iranian Judicial Authority. IFMO operates a comprehensive suicide
registry and conducts autopsies for documented cases. Suicide rates (per 100,000) were
computed for each province. Socio-demographic and economic data spanning 2011 to
2022 for all 31 provinces were collated from the Statistical Center of Iran. The dataset
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includes variables such as unemployment rate (X1), labor force participation rate (X2),
ln(population aged 15 and over) (X3), consumer price index (CPI) (X4), literacy rate (X5),
and ln(gross domestic product) (X6). These variables serve as inputs for an econometric
model that accounts for spatial correlations, elucidating factors influencing suicide rates
(y) per 100,000 population.

Table 1: Descriptive Summary and Data Transformation.

Variable Minimum Mean Maximum SD Skewness Kurtosis
y 1.70 6.24 19.70 3.57 1.44 4.74

X1 5.80 11.20 21.70 3.07 0.90 4.16
X2 32.30 41.38 50.20 3.62 -0.28 3.01
X3 12.38 14.13 16.46 0.77 0.12 2.63
X4 39.20 139.40 401.00 97.43 1.18 3.26
X5 70.80 84.49 92.90 4.36 -0.62 3.52
X6 10.30 11.77 14.39 0.85 0.59 3.23

The dataset encompasses both independent and dependent variables in Table 1, offer-
ing insights into the study. Over an 11-year span, suicide mortality rates averaged 6.24
per 100,000 residents, with a standard deviation of 3.57. Certain dataset variables show
skewedness and broad value ranges, typically addressed through logarithmic transforma-
tion. Here, we applied such transformation to the population aged 15 and over and GDP
variables, effectively simplifying analysis and interpretation. Our dataset comprises 341
instances, with the inclusion of a new ’suicide category’ attribute to enable prediction.
This categorical attribute classifies instances based on the percentage of suicide mortality:
’Low’ below 33%, ’Medium’ between 33% and 66%, and ’High’ above 66%. Calculation
precision and multiple author cross-checks ensure attribute accuracy.

Spatial correlations among provinces stem from neighborhood relationships, necessi-
tating spatial considerations for accuracy. A tailored queen-contiguity weight matrix,
designed for polygonal data, captures spatial links through shared vertices. Connect-
ing provinces that share at least one vertex enhances spatial relationship understanding.
This matrix exploration unveils Iran’s 31 provinces’ spatial interdependencies, providing
a comprehensive perspective on suicide mortality dynamics across regions.

In spatial econometrics, model selection is pivotal. Empirical specification tests, using
the specificity-to-generality approach like Lagrange multiplier (LM) tests by Anselin(1988),
stand as robust tools against diverse spatial dependence sources. Spatial dependencies sig-
nify mutual influence among neighbors, ignoring which biases estimates. LM tests assess
spatial autocorrelation in non-spatial models’ residuals (e.g., OLS), identifying system-
atic spatial patterns. A significant outcome suggests model misspecification, indicating
unaccounted spatial dependencies. Conducting LM tests reveals spatial autocorrelation
presence and extent. Significance underscores a spatial econometric model’s suitability,
recognizing interconnected neighboring observations. Integrating geographical attributes

Anselin (1988)
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mitigates positive spatial autocorrelation effects.

Table 2: LM Tests Confirm Strong Spatial Autocorrelation.

Test Statistic P-value
LMerr 417.06 ¡ 2.2e-16
LMlag 247.38 ¡ 2.2e-16

RLMerr 176.3 ¡ 2.2e-16
RLMlag 6.6259 0.01005
SARMA 423.68 ¡ 2.2e-16

In Table 2, the LMerr, LMlag, and RLMerr tests yield highly significant p-values (¡
0.05), indicating robust spatial autocorrelation evidence in residuals and the dependent
variable. RLMlag also supports this, emphasizing dependent variable spatial autocorre-
lation. The SARMA model reinforces significant spatial autocorrelation. In conclusion,
LM tests crucially detect spatial autocorrelation, advocating spatial lag term inclusion.
Addressing spatial relationships enhances accuracy and robustness, vital for interpreting
data’s spatial patterns.

3 Methodology

This study is designed to undertake a comparative analysis of predictive accuracy be-
tween conventional spatial econometric models and novel random forest models in pro-
jecting suicide mortality levels within Iran’s provinces. To accomplish this objective, our
methodology encompasses seven distinctive model specifications, each shedding light on
the intricate interplay between spatial dependencies and the dynamics of suicide mortality.

Our spatial econometric models address spatial dependence, where proximity strength-
ens relationships. Building on Ordinary Least Squares (OLS), these models integrate a
spatial weights matrix (W ) ingeniously (LeSage,2009). The matrix’s placement adapts
across scenarios, finely tuning for distinct spatial autocorrelation patterns. In contrast,
the random forest, an ensemble learning hallmark, amalgamates outputs from decision
trees. Consider the Classification and Regression Tree (CART) algorithm, yielding cate-
gorical assignment probabilities or average predictions (Breiman,2001).

The crux of our endeavor pivots around the calibration and scrutiny of the following
seven model configurations: spatial lag (autoregressive) (SAR), spatially lagged X (SLX),
spatial Durbin (SDM), random forest (RF), random forest with the spatial lag of y in-
cluded (RFSAR), random forest with spatial lags of both X and y included (RFSDM),
and random forest with only the spatial lag of X included (RFSLX). Each distinct config-
uration provides a unique vantage point into unraveling the complex tapestry of spatial
dependencies and their role in shaping the trajectory of suicide mortality projection across
Iran’s provinces.

LeSage, 2009
Breiman, 2001
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4 Results
Three spatial econometrics models (SAR, SLX, SDM) and four data mining models (RF,
RFSAR, RFSLX, RFSDM) were applied for classifying outcomes into Low, Medium, or
High categories. Cross-validation evaluated each model’s performance rigorously. Ta-
ble 3 comprehensively assesses various models based on metrics like accuracy, precision,
sensitivity, F-score, and specificity. RFSDM stands out as superior.

Table 3: Model Performance Metrics: A Comparative Analysis of Prediction Models for Suicide Mor-
tality Levels.

Model Accuracy Precision Sensitivity Fscore Specificity
SAR 0.3659 0.3750 0.2727 0.3158 0.4737
SLX 0.4651 0.4500 0.4286 0.4390 0.5000
SDM 0.4651 0.4211 0.4000 0.4103 0.5217
RF 0.2703 0.0769 0.4000 0.1290 0.2500
RFSAR 0.8250 0.4615 1 0.6316 0.7941
RFSLX 0.8684 0.4444 1 0.6154 0.8529
RFSDM 0.8919 0.4286 1 0.6000 0.8824

Accuracy measures overall correctness via correctly predicted instances divided by
total. Higher values mean better predictions; e.g., RFSLX’s accuracy is 0.8684 (86.84%).
Precision is the ratio of true positive predictions among all positives. Higher values
reduce false positives; RFSDM’s precision is 0.4286 (42.86% true positives). Sensitivity
(Recall) gauges true positive predictions among actual positives. Higher values lower false
negatives; RFSAR’s sensitivity is 1 (100% true positives). F-score balances precision and
sensitivity. A higher F-score suggests better balance; e.g., RFSAR’s F-scores are 0.6316,
signifying balanced performance. Specificity assesses true negative predictions among
actual negatives. Higher values mean fewer false positives; RFSDM’s specificity is 0.8824
(88.24% correct negatives).

The confusion matrix and the out-of-bag (OOB) error plot evaluate random forest
performance. The confusion matrix breaks down predictions per class, aiding accuracy,
precision, sensitivity, specificity assessment. The OOB error plot displays OOB error
against trees. This metric estimates unseen data prediction error. The plot depicts error
changes with tree count, helping assess overall performance and optimal tree number.

The OOB error rate trend gradually decreases until it levels off, indicating limited gains
beyond a certain point. In our dataset, stability is reached at approximately 0.12 (1.2%)
after around 70 trees, beyond which the error remains steady. This trend is visualized in
the OOB error plot, aiding the selection of the optimal tree count for RFSDM (Figure 1).
Identifying the stabilization point allows confident selection of around 70 trees, striking
a balance between capturing patterns and avoiding overfitting. This choice ensures the
effectiveness of RFSDM with unseen data while avoiding unnecessary complexity. This
analysis offers valuable insights for performance assessment, guiding informed research
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Figure 1: Out-of-Bag (OOB) Error Rate Trend for RFSDM.

decisions.
Table 4 displays confusion matrices for seven models predicting suicide mortality levels

(Low, Medium, High). Each model’s predicted outcomes are compared to actual obser-
vations. Instances per level, correct/incorrect predictions are detailed. SAR, SLX, SDM,
RF, RFSAR, RFSLX, and RFSDM models are evaluated, revealing RFSDM’s superiority
in prediction accuracy and overall performance. It correctly predicts 92 instances30 Low,
29 Medium, 33 Highyet makes 12 incorrect predictions across levels.

Table 4: Confusion Matrix Using the Seven Model.

Model Level Low Medium High Correct Incorrect
Low 9 6 13

SAR Medium 10 15 12 33 71
High 16 14 9
Low 11 9 9

SLX Medium 11 11 12 36 68
High 12 15 14
Low 12 8 9

SDM Medium 11 11 12 37 67
High 12 15 14
Low 8 2 0

RF Medium 24 25 12 56 48
High 3 8 23
Low 27 6 0

RFSAR Medium 7 26 2 86 18
High 0 3 33
Low 29 4 0

RFSLX Medium 5 28 2 90 14
High 0 3 33
Low 30 3 0

RFSDM Medium 4 29 2 92 12
High 0 3 33

Table 5 displays the cross tabulation of RFSDM Model’s predictions against actual
suicide mortality levels. Table cells contain diverse information: observations (N), Chi-
square contribution, proportions relative to row total (N / Row Total), column total
(N / Col Total), and overall total (N / Table Total). This cross table encompasses 104
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dataset observations. Rows represent model-predicted suicide mortality levels, columns
actual levels. The rightmost column tallies predicted level observations, while the bottom
row provides actual level totals. To glean insights from the table, we delve into each

Table 5: Confusion Matrix: Predicted vs. Actual Suicide Mortality Levels.

Categories Low Medium High Row Total
Low 30 3 0 33

34.211 5.916 11.106
0.909 0.091 0.000 0.317
0.882 0.086 0.000
0.288 0.029 0.000

Medium 4 29 2 35
4.841 25.178 8.118
0.114 0.829 0.057 0.337
0.118 0.829 0.057
0.038 0.279 0.019

High 0 3 33 36
11.769 6.858 36.001
0.000 0.083 0.917 0.346
0.000 0.086 0.943
0.000 0.029 0.317

Column Total 34 35 36 104
0.327 0.337 0.337

cell’s values. Consider the first row: the model forecasted 30 instances as Low, 3 as
Medium, and none as High. The row total of 33 signifies total Low predictions. Chi-
square contribution values gauge cells’ impact on the overall goodness-of-fit Chi-square
statistic. By applying similar analysis to other rows and columns, we evaluate the model’s
accuracy in predicting actual suicide mortality levels. Altogether, this table unveils the
model’s predictive prowess, showcasing alignment between its predictions and actual data.

5 Conclusion
This study delved into the intricate realm of predictive modeling to forecast suicide mor-
tality levels across Iranian provinces. Through a comprehensive analysis, we embarked on
a comparative journey, pitting the strengths and challenges of spatial econometric models
against those of random forest models. Our exploration encompassed SAR, SLX, and
SDM spatial econometric models, each showing potential in capturing certain facets of
spatial autocorrelation. However, their overall predictive prowess fell shy of expectations,
hinting at the need for refinement and the integration of supplementary spatial insights.

In contrast, the performance of the non-spatial random forest model proved under-
whelming, underscoring the indispensability of spatial considerations in predictive mod-
eling. Emerging as potent contenders, the spatial econometric random forest models
stepped into the spotlight, overshadowing traditional spatial econometric and non-spatial
random forest counterparts. Particularly, the RFSDM model shone brightly, showcasing
impressive accuracy, sensitivity, and specificity across diverse metrics.
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In parallel with the findings of Credit(2022), our research emphasizes the pivotal role
of spatial awareness in predictive modeling. Yet, we venture into uncharted territory by
examining panel data and harnessing classification random forest models, enriched with
spatial lag. This innovative approach unearths the predictive prowess of these models
in classification tasks, unveiling the intricate spatial relationships intrinsic to the data.
Our discoveries hold crucial implications for public health policymakers and spatial data
analysts alike. The spotlight firmly on RFSDM as the prime model for predicting sui-
cide mortality rates carries immense potential for steering targeted interventions and
data-driven public health policies against this pressing concern. However, amid these
illuminating findings, our study does acknowledge limitations. The choice of predictor
variables and data quality could sway model accuracy. Furthermore, the omission of tem-
poral dynamics in suicide mortality rates warrants dedicated exploration in forthcoming
research endeavors.
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Abstract:
Traffic accident in Iran is one of the most important causes of losing years of life and

studying risky traffic behavior helps to control and manage it in a proactive way. We
estimate the spatio-temporal functional structure of traffic behavior and risky driving
patterns of four indices 1) total traffic, 2) speeding, 3) unsafe distance and 4) illegal over-
taking in Iran from 2016 to 2023. In this regard, we collect data from more than 2500
count stations near roads. The sandwich smoother for spatio-temporal functional data
with hero R package are used in 5 steps 1) Initial smoothing preparation, 2) Assembling
spline information, 3) Prepare the data, 4) Enhance the fit and 5) Estimate and Smooth.
The results are presented in various maps with quarterly data and summary statistics
such as mean squared error (MSE) and correlation (COR) are presented in tables for
three resolution scenarios. The best scenario according to them consists of five resolu-
tions 30,60,90,120 and 150 knots.

Keywords: Traffic Offenses, Spatio-Temporal, Functional Data, Iran .
Mathematics Subject Classification (2010): 62H11, 62M30, 91D25

1 Introduction

According to the World Health Organization Report, every 24 seconds someone dies on the
road and the speed of vehicles is at the core of road traffic injury problems. They consider
Speed management, Leadership in road safety, Infrastructure design, and improvement,
Vehicle safety standards, Enforcement of traffic laws, and Survival after a crash are key
elements of the ”Save Lives” technical package. The estimated number of injuries and
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death on roads and highways were about 500,000 and 15,300 people in 2020 in Iran. (WHO
Team , 2018)

A lot of studies focused on the deaths and injuries on Iranian roads but only a few of
them focus on traffic offenses as a prevention factor such as (Fayaz et al , 2020) estimates
the traffic offenses near some important locations, for example, airports and (Fayaz et
al , 2022) analysis unusual traffic behavior in holidays like Iranian New year holidays
(Noruz) with Functional Data Analysis (FDA) (Ramsay and Silverman , 2005), bivariate
generalized additive models (GAM) (Wood , 2017) and Integrated Nested Laplace Approx-
imation (INLA) (Moraga , 2019). The limitation of dates or locations of these studies
from one side and the complex structure of spatiotemporal data need new methodologies
that work well and fast with large spatio-temporal data. Recently, the hero methodology
also worked fast and well with such large datasets. (French and Kokoszka , 2021)

In this regard, we study and estimate the spatio-temporal structure of traffic behavior
and risky driving patterns in Iran from 2016 to 2023 with hero methodology.

2 Material and Methods

The datasets are recorded hourly and daily and we collected and integrated them from
more than 2,500 count stations near the roads (Figure 1). The road lengths are about
197,770 Kilometers in 2020. We summarize data to average quarterly for each station
and at least more than 40% of all count stations with no missing values of each province
are considered. Four indices are 1) Total traffic, 2) Speeding, 3) Unsafe Distance, and 4)
Illegal Overtaking. Each count station may count a vehicle, therefore the numbers are
not presented the unique vehicles. For example, on a road from A to B, there exits three
count stations A1B, A2B, and A3B. A vehicle that goes from A to B has one count in
each count station. Therefore, it can show the traffic congestion points and risky points.

The dataset has a complex pattern and we model it as spatio-temporal (SP) data.(Wikle,
Zammit-Mangion and Cressie , 2019) Among the SP methods, we consider a new class of
them that has a combination with Functional Data Analysis (FDA) methods. In the FDA,
we worked with the functional and curve data instead of each observation and we con-
sidered the underlying structures with smoothing methods like B-Spline and dimension
reduction methods such as Functional principal component analysis (FPCA) (Ramsay
and Silverman , 2005). The non-parametric FDA is also introduced without previous
assumptions (Ferraty and Vieu , 2006) and many statistical R packages were developed
to do both them, for example, (Febrero-Bande and De La Fuente , 2012) The collection of
new FDA methods with spatial and geographical data are published (Mateu and Giraldo
, 2021) and we use the generalization of the sandwich smoother for spatio-temporal func-
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tional data with hero R package. (French and Kokoszka , 2021). The hero methodology
used FDA ideas to reduce the dimension of data in both spatial and temporal dimen-
sions, separately. In this regard, it represents them with basis functions such as B-Splines
for temporal patterns and radial basis functions with Wendland covariance function for
spatial patterns. The developed penalized spline is Originally from Sandwich Smoother
(OSS) (Xiao et al , 2013) and Spatio-Temporal Sandwich Smoother (STSS) was presented
in hero. The radial basis function is used instead of the tensor product for smoothing
bivariate data. The main benefits of B-splines are Compact support, Easy-to-compute
derivatives, and Specifiable parameters related to smoothness (Ramsay and Silverman ,
2005). In this regard, the Wendland covariance function was used. (French and Kokoszka
, 2021). The Wendland covariance function (French and Kokoszka , 2021):

r(h) =


∑N

1 ajh
j 0 ≤ hj ≤ ϕ

0 ϕ < h

h is distance between two points in d-dimensional space, N is the desired degree of
the polynomial (Smoothness), ϕ defines the support of the function, {aj, j = 1, 2, ..., n}
are a set of non-zero coefficients,

The hero methodologies have 1) Initial smoothing preparation, 2) Assembling spline
information, 3) Preparing the data, 4) Enhance the fit, and 5) Estimate and Smooth
(French and Kokoszka , 2021). We consider three scenarios with five resolutions. The
number of knots are 30, 60, 90, 120, and 150 in resolutions 1 to 5, respectively. The first
scenario is a combination of resolutions 1,2 and 3, the second scenario is a combination of
resolutions 1,2,3, and 4, and the third scenario is a combination of resolutions 1,2,3,4, and
5. The results are compared with Mean Squared Error (MSE) and correlation (COR).

3 Results

The model comparisons are presented in Table-1. The best results are obtained with
five resolutions. The estimated maps are presented in Figure-2, Figure-3, Figure-4, and
Figure-5 for total traffic, speeding, unsafe distance, and illegal overtaking, respectively.

In Table 1, two indices mean squared error (MSE) and correlation (COR) between
observations and predictions are presented in three resolution scenarios (A, B, and C)
for all four variables. It also compares the two statuses for the response variable: 1)
without transformation and 2) with logarithmic transformation. According to the MSE,
the best results are obtained in Scenario C and no transformation with five resolutions
for Total traffic (61,485,635.36), Speeding (1,858,893.64), Unsafe Distance (7,072,722.76),



Spatio-Temporal Functional Data Analysis 20

and Illegal Overtaking (24,685.62). One of the reasons for the high value of MSE is that
the numbers itself are very large. Therefore, other summary indexes in percentage are
calculated but they were not presented in this paper. But the highest correlation are for
responses with logarithmic transformation in scenario C with five resolutions: Total Traffic
(80.7%) , Speeding (65.0%), Unsafe Distance (77.9%) and Illegal Overtaking (68.7%).

Table 1: The hero Spatio-Temporal Results

Variabes Index

Y Transformations
No Transforamtion Log

Resolutions* Resolutions*
A B C A B C

Total Traffic MSE 72,577,477.16 66,955,879.15 61,485,635.36 85,508,904.54 78,555,179.85 72,989,626.44
COR 64.4% 67.8% 71.0% 70.3% 76.9% 80.7%

Speeding MSE 1,986,524.26 1,918,335.87 1,858,893.64 2,452,734.21 2,407,946.87 2,364,804.68
COR 44.2% 47.3% 49.7% 51.4% 58.5% 65.0%

Unsafe Distance MSE 8,110,095.41 7,599,598.58 7,072,722.76 10,575,791.63 10,044,393.01 9,427,749.30
COR 58.7% 62.1% 65.4% 69.7% 74.1% 77.9%

Illegal Overtaking MSE 28,948.15 27,080.74 24,685.62 32,601.03 31,994.15 30,368.31
COR 29.2% 38.2% 47.2% 56.1% 62.7% 68.7%

*Resolutions: A = 1,2,3 , B = 1,2,3,4 , C = 1,2,3,4,5

Figure 1: Count Stations (red dots), Roads and Highways (Grey lines) in Iran

In Figure 1, the location of count stations and road and highways and border of
provinces are plotted in red dots, Grey lines and black lines, respectively. The prediction
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Figure 2: Total of Transportation.

Figure 3: Speeding
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Figure 4: Unsafe Distance

Figure 5: Illegal Overtaking.
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results for all four indices are presented in the 2, 3, 4 and 5 from Q1 of 2016 to Q1 of
2023. The color range are presented from low (yellow) to high (dark blue).

Conclusion
he hero methodology also work fast and well with Iranian traffic behavior dataset and
the comparison with other new methods such as Spatio-temporal DeepKriging (Nag et al
, 2023), Generalized Spatio-temporal Regression with PDE Penalization (Arnone et al ,
2023) etc. are one of the future direction of this research. The driver behavior data is not
available and it is the main limitation that can obtained with Surveys, Questionnaires,
Mobile Applications, Internet of Things and Vehicle Telematics. Traffic accident in Iran is
one of the most important causes of losing years of life and studying risky traffic behavior
helps to control and manage it in a proactive way. (Saadat et al , 2022)
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Abstract:
With the development of experimental techniques, one can collect complex structure

data in many fields and informations provided by these data are becoming more compli-
cated. A common property of these data sets is that they come from a population with
inter-class correlation, which refers to the mixed effects data; the other one is in which the
number of variables greatly exceeds the number of samples, then we have high dimensional
data. This paper proposes an adaptive lasso approach for the simultaneous selection of
mixed effects and also regression coefficients. It is a new approach in variable selection in
the mixed effects quantile regression model context by considering the sparsity. Therefore,
the present paper proposes a new optimization problem process in this field to shrink the
mixed effects and regression coefficients simultaneously. Our simulation experiments show
the superiority of the presented method in comparison with lasso penalty in mixed effects
quantile regression models.

Keywords: Quantile Regression, Adaptive Lasso, Regularization, Variable Selection.
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1 Introduction

Sometimes, to invoke the regression tools, there is an obligation to utilize the quantiles
rather than the mean while analyzing the data from the real-life phenomenon. This can
be done with the quantile regression (Koenker and Bassett , 1978), due to the known
drawbacks of the regression based upon the mean, i.e., the ordinary regression.

Similar to the ordinary regression, the ordinary quantile regression applied in high
dimensional data has a low bias but large variance, leading to the low accuracy. The
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regularization is, then, an option to balance between the bias and variance. In the regu-
larization framework, many different types of penalties have been introduced to achieve
variable selection. The most famous methods of regularization with convex penalty include
the nonnegative garotte (Briman, 1995), ridge regression (Horel and Kennard , 1970) and
the lasso (Tibshirani, 1996). The adaptive lasso presented by Zou (2006) is a cherished
development of the lasso that allocates adaptive weights for different coefficients in the L1

penalty; enjoying some interesting properties too. Historically, Wang and et al. (2007)
used the L1 penalty in the median regression model. Adaptive weight in the penalty term,
known as the adaptive lasso, was used by Wu and Liu (2009) in the quantile regression
and was called the adaptive lasso quantile regression.

As expected, constructing an effective variable selection method in a mixed effects
quantile model is a challenging topic. By inducing the role of random effects in the quan-
tile regression models, the within-subject variability is included in these model. This trick
prevents obtaining biased estimates for model parameters (Diggle and et al. , 2002). On
the other hand, if the model contains unnecessary random effects, it will make the covari-
ance matrix singular, which is not conducive to the estimation of unknown parameters
(Li and et al. , 2020). Therefore, taking into account the impact of the random effects
for estimating and selecting the fixed effects is a crucial problem in a mixed effects model.
There are very few methods that handle the selection of random effects directly. Scien-
tific reports show that Koenker (2004) is the first to propose the L1 penalized quantile
regression model for longitudinal data analysis. However, his proposed method cannot
regression modelling in tackle high-dimensional data.

Bondell and et al. (2010) proposed an adaptive lasso approach for the simultane-
ous selection of random and fixed effects. However, their method relied on the mean
regression framework. Li and et al. (2020) suggested a new algorithm to simultaneously
obtain estimates of fixed and the random effects based on lasso penalty by combining the
technique introduced by Bondell and et al. (2010), Koenker (2004).

This paper proposes an adaptive lasso approach for the simultaneous selection of
random and fixed effects. That is a new approach in variable selection in the mixed
effects quantile regression model context. This idea with applying adaptive lasso penalty
to both fixed and random effects simultaneously in mixed effects quantile regression model
can jointly estimate parameters and random effects. Moreover, we present a process to
estimate both fixed and random coefficients by considering the sparsity too.

The rest of this paper is organized as follows. In Section 2, we describe mixed effects
quantile regression. In Section 3 our proposed method is described in more detail. Also,
we provide an algorithm to utilize this new method in the application. The results of
the simulation study on comparing the the adaptive lasso with the lasso are reported in
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Section 4.

2 Model Specification

Suppose that we have n subjects, where the i-th subject has ni observations. Based on
the specific quantile, let’s say τ , chosen from (0,1), the mixed effects quantile regression
model is often written as

yij = xij
T βτ + zij

T uiτ + εijτ , j = 1, . . . , ni, i = 1, . . . , n, N =
∑

i

ni, (2.1)

where p-dimensional covariate vectors xT
ij

= (xij1, xij2, . . . , xijp) are row of known design
matrix Xi and yij, is j-th observation of continuous random variable on the i-th subject.
Moreover, in the model (2.1), a p-dimensional vector of fixed regression coefficients is
βτ = (β0τ , β1τ , . . . , βpτ )T , zT

ij
= (zij1, zij2, . . . , zijq) is row of covariate matrix associated

with random effects Zi and uiτ = (ui1τ , ui2τ , . . . , uiqτ )T is a q × 1 vector of random ef-
fects. Without loss of generality, we can proceed our discussion through considering a
quantile regression model with no intercept via centering the covariates. Throughout this
manuscript, the quantile, i.e., τ is taking its value in (0,1). Hence, to ease repetition, we
omit this statement. So, we write βτ , yijτ and uiτ respectively as β, yij and ui when
there is no confusion.
Here, εijτ is the model errors usually following the Asymmetric Laplace Distribution
(ALD) written as εijτ ∼ ALD(0, σij, τ), for i = 1, . . . , n. ALD is comprehensively treated
by Koenker and Machado (1999). Considere the following model for the conditional
quantile functions of the response of the j-th observation on the i-th subject:

Gyij
(τ |xij,ui) = xij

T β + zij
T ui, j = 1, . . . , ni, i = 1, . . . , n. (2.2)

To estimate the parameters in the model (2.2), one should solve the optimization problem

arg min
(β,u)

n∑
i=1

ni∑
j=1

ρτ (yij − xij
Tβ − zij

T ui) (2.3)

where ρτ (ν) =
[
(1−τ)I(u ≤ 0)+τI(ν > 0)

]
|ν| is called check function and I(.) is indicator

function. Let write yi = (yi1, . . . , yini
)T , Xi = (x

i1 ,xi2 , . . . ,xini
)T , Zi = (z

i1 , zi2 , . . . , zini
)T

and also consider the vector of errors as εi = (ε
i1 , εi2 , . . . , εini

)T . Further, assumes that
ui ∼ N(0q,Σui

), i = 1, . . . , n. The model in (2.1) for i-th subject is often written in the
following form:

yi = Xiβ + Ziui + εi, i = 1, . . . , n. (2.4)
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Now, suppose X∗
i = [X i,Zi] is a ni×(p+q) matrix and β∗

i =
[
βT ,uT

i

]T
is a (p+q)−vector.

We can re-write the equation (2.4) as

yi = X∗
i β

∗
i + εi, i = 1, . . . , n. (2.5)

So to achive the estimate of β∗
i in (2.5), say β̂∗

i , one can rewrite (2.3) in the same structure
as (2.5) and then solve the optimization problem

arg min
β∗

n∑
i=1

ni∑
j=1

ρτ (yij − x∗
ij

T β∗
i ). (2.6)

The estimate of other parameter are done accordingly.

3 Penalized Mixed Quantile Regression

3.1 Lasso MixedQuantile Regression

In the penalized mixed quantile regression approach, introduced by Koenker (2004), the
lasso penalty function is considered as the loss function leading to the general optimization
problem

min
(u,β)

n∑
i=1

ni∑
j=1

ωijρτ

(
yij − xij

T β − ui

)
+ λ

n∑
i=1

|ui|. (3.1)

As seen, the penalty used in this approach is only a function of random effects and
shrinkage is not done based on the fixed parameter. Therefore, we suggest to use the
model (2.5), and according to Li and Zhu (2008), define the lasso mixed quantile regression
estimates i.e., β̂∗ as:

arg min
β∗

n∑
i=1

ni∑
j=1

ρτ (yij − x∗
ij

T β∗
i ) + λn

p+nq∑
k=1

|β∗
k|. (3.2)

where β∗ = (β1, β2, ..., βp, u11, u12, ..., unq)T for τ ∈ (0, 1).

3.1.1 Adaptive Lasso Quantile Regression

It is known that the lasso ignores the effect of randomness of variables in the penalty
term. The adaptive lasso, instead, overcomes this drawback and therefore has better per-
formance in the statistical sense (Zou, 2006). Also, it enjoys the oracle properties and
also efficiently follows the same algorithm as the lasso does. Mathematically, adaptive
weights are determined using the initial estimates, already derived via invoking the ordi-
nary regression method to estimate the regression coefficients. Those weights lead to high
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precision, turning the adaptive lasso very popular. Let us recall the weighted lasso mixed
quantile regression based on a known weights vector w = (w1, ..., wp+nq)T defined as:

arg min
β∗

n∑
i=1

ni∑
j=1

ρτ (yij − x∗
ij

T β∗
i ) + λn

p+nq∑
k=1

wk|β∗
k|, (3.3)

where β∗
i = (β1, β2, ..., βp, ui1, ui2, ..., uiq)T and β∗ = (β1, β2, ..., βp, u11, u12, ..., unq)T .

We use idea that is suggested by Zou (2006) and Wu and Liu (2009) and in (3.3), define
the weights as wk = 1

|β̃∗
k

|γ , k = 1, . . . , p+nq where γ > 0 and β̃∗ is the vector of the initial
coefficients taken from the ridge or unpenalized mixed quantile regression.

3.2 The Algorithm of The Adaptive Lasso

In this section, we are going to provide an algorithm suggested by Wu and Liu (2009)
and Koenker and Mizera (2014) for deriving the estimates arising from the adaptive lasso
in mixed effects quantile regression.
Algorithm 1:
Step 1. Define x∗∗

ij = x∗
ij

T w−1
i , where i = 1, 2, ..., n, j = 1, 2, ..., ni where wi is p + q-

vector that its elements are the weights in adaptive lasso penlty structure.
Step 2. Solve the lasso problem for all λn, i.e.,

β̂∗
lasso = arg min

β∗
τ1

n∑
i=1

ni∑
j=1

ρτ1(yij − x∗∗
ij

T β∗
i,τ1) + λn

p+nq∑
k=1

|β∗
k,τ1|.

Step 3. Report the estimate as β̂∗
alasso = w−1T

β̂
∗
lasso where w = (w1, ..., wp+nq)T is

p+ nq-vector.
Below, we sketch a simple proof on why the Algorithm 1 guarantees a solution to the
optimization problem that appeared in Step 2 We write:

β̂∗
alasso = arg min

β∗
τ1

n∑
i=1

ni∑
j=1

ρτ1(yij − x∗
ij

T β∗
i,τ1) + λn

p+nq∑
k=1

wk|β∗
k,τ1 |

= arg min
β∗

τ1

n∑
i=1

ni∑
j=1

ρτ1(yij − x∗
ij

T w−1
i wi

T β∗
i,τ1) + λn

p+nq∑
k=1

wk|β∗
k,τ1|

= arg min
β∗

τ1

n∑
i=1

ni∑
j=1

ρτ1(yij − x∗∗
ij

T wi
T β∗

i,τ1) + λn

p+nq∑
k=1

wk|β∗
k,τ1|

= arg min
β∗

τ1

n∑
i=1

ni∑
j=1

ρτ1(yij − x∗∗
ij

T β∗∗
i,τ1) + λn

p+nq∑
k=1

|β∗∗
k,τ1|.
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The tunning parameter plays a crucial role in penalization problems determining. This
is also true while implementing in the mixed effects quantile regression. For selecting the
optimal pair of (γ, λn) in the adaptive lasso quantile regression, we use the idea proposed
by Zou (2006), which will be discussed in detail in the simulation section.

4 Simulation Study

In this section, we evaluate the performance of our method in the mixed effects quan-
tile regression indicated by alasso-MQR and compare it with lasso-MQR methods. To
conduct our simulation study, we consider the model given in (2.1) and suppose we have
10 subjescts that every subject has 20 observations i.e., n = 10 , m = 20. set βτ =
(3, 1.5, 0, 0, 2, 0, 0)T and the covariates, xT

ij
= (xij1, xij2, . . . , xij8) and zT

ij
= (xij1, xij2, . . . , xij5),

i = 1, 2, . . . , n, j = 1, 2, . . . ,m are generated as i.i.d samples from the multivariate
normal density with the mean vector zero and the correlation between each pairs of
the predictor variables, xijk and xijl through the expression cor(xijk, xijl) = (0.5)|l−k|,
1 ≤ l, k ≤ 8. We also set σ equal to 1, 3 and 6 where the corresponding SNRs are 21.25,
2.35 and 0.59 respectively. Finally, we use uiτ = (ui1τ , ui2τ , . . . , uiqτ )T iid∼N5 (0, D) and
D = diag(2, 2, 2, 0, 0) and εij

iid∼N (0, σ).
We consider nine different scenarios via altering the relevant and influential parameters.
To compare different methods and scenarios, we use the Relative Prediction Error (RPE)
based on a distance constructed by invoking the check function RPE = E[ρτ (ŷ−X∗T β∗

τ )]
σ2 .

As is common in invoking the linear quantile regression models, we use the estimates of
coefficients offered by the unpenalized quantile regression model as the initial values for
the weights of the adaptive lasso. We obtain the estimates after fitting two methods using
the algorithm proposed by Koenker and Mizera (2014), then extended by Sherwood and
et al. (2017) and freely available in the rqPen package. We consider a set of feasible
values for each method for λn, γ appeared in the adaptive lasso. These values for λn

and γ are {0.001, 0.002, ..., 2} and {0.1, 0.2, ..., 2}, respectively. Also, to concentrate on
particular quantile, we set τ to 0.25, 0.5 and 0.75 in each individual investigation. To
evaluate the accuracy of the RPE, its standard errors were also computed through a boot-
strap scheme. The standard deviation of these medians, let us call this the Monte Carlo
sd, was reported as the estimated standard error of the RPEs. In Table 1, we show the
values of RPEs and their standard errors (in bracket), after fitting the model set in the
simulation setup using the lasso, adaptive lasso (alasso) on the simulated data. In each
scenario, the selected methods correspond to the columns highlighted by the bold faces.
According to the results reported in Table 1, it can be seen that our proposed method
outperforms two alternatives in terms of the RPE measure in this particular simulation
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setting. But, it might not suffice to make a decision just in terms of the RPE. Hence, we
reported the results in terms of the bias computed as discussed above. The results are
also summarized in Table 1. As seen, the adaptive lasso has the better performance than
the lasso in some cases here. It sounds that it is weak when σ is 6. But, generally, we can
assert that in the mixed effect quantile regression considered in this paper, the adaptive
lasso penalty is doing better than the lasso penalty in our simulation study.

Table 1: The values of RPEs and their standard errors (in bracket) in lasso and adaptive
lasso penalty using the model and scenarios discribed in the text.

τ n Lasso ALasso
1 2.666(0.0058) 2.653(0.0052)

0.25 3 0.263(0.0011) 0.261(0.0015)
6 0.082(0.0004) 0.084(0.0005)
1 2.178(0.0071) 2.175(0.0081)

0.5 3 0.258(0.0014) 0.257(0.0012)
6 0.082(0.0004) 0.083(0.0006)
1 2.212(0.0055) 2.210(0.0054)

0.75 3 0.253(0.0015) 0.252(0.0011)
6 0.082(0.0005) 0.083(0.0005)

Conclusion
The purpose of this paper was to use adaptive lasso penalty in the mixed effects quantile
regression models, which is our research innovation. The efficiency of lasso and adaptive
lasso penalty was compared and it was shown that adaptive lasso penalty compared to
lasso in these models has a better performance. A proposed technique was used to select
and estimate the fixed and random effects simultaneously, which has not been done in
previous researches. It can be investigated as a topic for future research to use a penalty,
which is a function of the check function in the mixed effects quantile regression models
that can work better than the adaptive lasso penalty.
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Abstract:
Traditionally, empirical indicators have been generated through methods like expert

surveys, document reviews, administrative data analysis, and public surveys. However,
this paper utilizes machine learning techniques to predict trial court performance using
key indicators for trial case processing. The study uses a dataset collected from 18 civil
branches within a trial court in Tehran, Iran, with a sample size of 119 case management
data. Logistic Regression was found to be the most effective data mining model, achieving
an area under the curve (AUC) of 98.5% and classification accuracy (CA) of 95.0%. The
logistic regression analysis revealed that the probability of positive performance evaluation
was influenced by factors such as the number of resolved cases. In contrast, the number
of pending cases at the beginning of a period had minimal impact. Evaluating trial
court administration is crucial for identifying and addressing negative performance issues
early on, which helps build public trust and confidence in the justice system. Regular
performance evaluations can also contribute to developing a decision support system that
enhances overall court performance.

Keywords: court performance prediction; data mining; judicial data; machine learn-
ing techniques; artificial intelligence.
Mathematics Subject Classification (2020): 62P99, 62H30.

1 Introduction
Court administration performance and reliable performance indicators are very impor-
tant in a well-functioning justice system. Court administration performance includes the
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efficiency and effectiveness of court processes, while reliable performance indicators are
crucial in evaluating and monitoring court administration performance. These indicators
provide accountability, transparency, and opportunities for continuous improvement in
court procedures.

Using machine learning to predict court administration performance is significant for
several reasons. Machine learning can analyze large amounts of data quickly and accu-
rately, identifying patterns and trends that may not be apparent to human analysts. It
can automate the performance measurement and prediction process, reducing the work-
load of court administrators and facilitating informed decision-making. Machine learning
can also improve the accuracy of performance predictions, leading to more efficient re-
source allocation and better outcomes for court users. Additionally, machine learning
can build predictive models that explore the relationships between court administration
performance and other factors, helping court administrators address key factors affecting
performance. Several performance indicators are used to measure court administration
performance in the Iranian court system, particularly in trial case processing. These indi-
cators include the average time for a case to be heard and decided, clearance rate, pending
caseload, number of cases resolved, and trial duration. Analyzing these indicators allows
court administrators to assess the efficiency and effectiveness of the court system and
identify areas for improvement. Machine learning can be employed to predict court ad-
ministration performance based on these indicators, optimizing resource allocation in the
court system (DeMatteo et al. , 2010; Islam et al. , 2017; Martin , 2019).

1.1 Materials and Methods

The Iranian justice system collects data on various aspects, which can be communicated
using justice indicators. These indicators are effective tools for assessing performance,
identifying issues, setting benchmarks, monitoring progress, and evaluating policy effec-
tiveness. Using justice indicators and other monitoring mechanisms ensures transparency
and accountability in the functioning of the Iranian justice system while offering policy-
makers and reformers essential feedback to inform decision-making.

Table 1 outlines the study objectives implemented to forecast trial court performances
efficiently. This research primarily focuses on performance prediction by utilizing state-of-
the-art machine learning algorithms for a judicial complex in Tehran, Iran. By incorpo-
rating advanced techniques, we aim to provide in-depth insights into the performance of
the Iranian justice system, enabling more informed decisions to improve its functioning.
Ultimately, this study aims to contribute to the betterment of the Iranian justice system
through data-driven analysis and informed policy implementations.

We leveraged the power of machine learning to formulate a system that accurately
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Table 1: Variability Analysis of Civil Branches in Trial Court.

Variable Average Min Max SD CV
The number of working days in a month (trial courts typically
have around 20 to 22 working days in a month; In Tehran,
courts generally maintain a five-day workweek with around 20
working days in a month.)

19.89 18 21 1.21 0.06

Pending cases at the beginning of a time period (courts main-
tain records of the number of cases pending at the beginning
of each month or quarter.)

599.59 0 1154 282.46 0.47

The number of cases referred to a court judge during a partic-
ular period of time (the total number of cases that have been
formally submitted to the judge for a decision during a specific
period.)

180.25 8 246 42.93 0.24

The number of resolved cases during a period (the total number
of cases that have been brought to a conclusion during a specific
period.)

171.15 14 277 61.10 0.36

The pending trial caseload (the number of cases that have been
committed for trial but have not yet been finalized or resolved.)

135.10 3 251 43.62 0.32

The number of precautionary/ monitoring time (the length of
time that a case is placed on hold or paused by a judge while
additional investigation, evidence gathering, or legal procedures
are carried out. This period can also be called a pre-trial period
or trial adjournment.)

158.97 0 778 101.15 0.64

Processing time (in a legal context, refers to the period elapsed
between a case being ready to be listed for trial, and the earliest
date it can be scheduled for trial or expedited hearing.)

87.80 4 1589 199.99 2.28

Precautionary/monitoring time period (a temporary pause of
the trial process by the judge for a particular case. During this
period, the judge temporarily suspends the proceedings for the
purpose of allowing sufficient time for conducting further in-
vestigation, gathering additional evidence, or completing legal
procedures to guarantee that the decision is based on a com-
prehensive understanding of the case facts and information.)

87.53 7 2624 255.25 2.92

The final decision number (the number of verdicts, orders, judg-
ments, or rulings issued by a court or a judge within a specified
period.)

168.59 14 277 60.43 0.36

The average entry processing time (the total time taken from
the last case registered for trial to its finalization in a court
proceeding.)

66.72 8 203 34.86 0.52
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predicts court administration performance based on historical judicial data. Implemen-
tation of advanced techniques like support vector machines, k-nearest neighbours, and
naive Bayes were utilized to achieve our objective. However, traditional machine learning
classifiers’ encoding methods fail to capture the intricate relationships between predictor
variables in a machine learning-based dataset, which can limit their ability to forecast
judicial courts effectively using judicial data only. Our system adopts the widely used
supervised learning approach, which requires the system to receive input data and their
corresponding labels during the training phase. During this stage, the system detects pat-
terns and relationships between the input and output data to make accurate predictions.
With this system, we aim to enhance decision-making, streamline resource allocation and
improve court administration by leveraging accurate predictions and valuable insights
from historical data. After training, our system undergoes an evaluation phase, assessed
with similar, non-utilized data. The model predicts labels for each document, and because
each label in this instance represents a court administration performance, our system’s
purpose is to forecast court performance. With the aid of pattern recognition in historical
data, our system can provide data-driven insights that enable informed decision-making
and performance evaluation in trial court administration. The typical method of assessing
a classification system’s performance is by using accuracy or the F1-score. Accuracy mea-
sures the number of correctly classified labels, while the F1-score measures the harmonic
mean of precision and recall. Precision evaluates the accuracy of the assigned court per-
formance, while recall measures the proportion of correctly classified cases with a specific
outcome. These metrics facilitate the effective measurement and identification of areas
that need further improvement to enhance overall accuracy and forecasting capability.

2 Result

Ten different data mining models were employed to classify the outcome into positive or
negative using ten independent variables (detailed in Table 1). The models included Neu-
ral Network (NN), Naive Bayes (NB), Adaptive boosting (AdaBoost), Gradient Boosting
(GraBoost), Random Forest (RF), Classification Tree (Tree), k-nearest neighbours (kNN),
Stochastic Gradient Descent (SGD), Support Vector Machine (SVM), and Logistic Regres-
sion (LR).

Several performance metrics were employed to evaluate the models’ performance in
terms of classification accuracy, including area under the curve (AUC), classification ac-
curacy (CA), F1-score, precision, and recall. Linear regression was not considered, given
that the analysis focuses on classification rather than regression. Based on AUC and
CA, the best-performing models are ranked in decreasing order, as supplied in Table 2.
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Table 2: Performance metrics of the ten data mining models

Model (average over classes) AUC CA F1 Precision Recall
Logistic Regression 0.985 0.950 0.950 0.950 0.950
Gradient Boosting 0.955 0.899 0.899 0.899 0.899
Neural Network 0.933 0.882 0.881 0.883 0.882
SGD 0.932 0.941 0.941 0.944 0.941
SVM 0.929 0.824 0.820 0.827 0.824
Random Forest 0.848 0.748 0.747 0.747 0.748
Tree 0.834 0.849 0.849 0.850 0.849
kNN 0.825 0.765 0.763 0.763 0.765
Naive Bayes 0.816 0.731 0.732 0.733 0.731
AdaBoost 0.780 0.773 0.775 0.785 0.773

Additionally, Table 2 shows the outputs when the target class is averaged over classes.
In summary, the statistical analysis used ten different data mining models to classify

outcomes as positive or negative using ten separate variables. Through the application
of several performance metrics, including AUC, CA, F1-score, precision, and recall, the
models were assessed, and the best-performing models were identified. Linear regression
was ruled out, given the analysis’s emphasis on classification rather than regression.

The analysis indicated that Logistic Regression was the best-performing model across
all three cases, achieving an AUC and CA of 98.5% and 95.0%, respectively. However,
when the target classification is ’negative’, the sensitivity is lower when compared to
classifying ’positive’. Notably, the model performed better for the ’positive’ target class
and worse for the ’negative,’ possibly due to unequal class sizes. While the AUC and
CA values were uniform across all three cases, there were notable differences in F1-score,
precision, and recall values. Similar differences were observed with the other nine models
evaluated in this study. Overall, the results suggest that Logistic Regression is the best
model for the classification task, with consistent AUC and CA performance across all three
target classes. However, there were variations in the model’s ability to predict ’positive’
and ’negative’ target classes, indicating the need to further explore the class imbalance.

In evaluating the model’s effectiveness, a confusion matrix was employed to classify
instances of classification and presented in Table 3. The matrix comprises True Positives
(TP), False Positives (FP), False Negatives (FN), and True Negatives (TN). The Logistic
Regression and SGD models correctly classified 113 out of 119 instances, with only 6
out of 119 misclassified. Generally, the number of models in which the number of false
positives is lower than the number of false negatives is equal to the number of models in
which the number of false positives is more or equal to the number of false negatives. It
means that Type I errors and Type II errors are almost equal.

Regarding the best-performing model, Logistic Regression’s success can be attributed
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Table 3: Classification instances

Model TP FP FN TN Correct Incorrect
SGD 69 5 1 44 113 6
Logistic Regression 67 3 3 46 113 6
SVM 64 15 6 34 98 21
Naive Bayes 53 15 17 34 87 32
Neural Network 65 9 5 40 105 14
KNN 58 16 12 33 91 28
Gradient Boosting 64 6 6 43 107 12
Tree 60 8 10 41 101 18
Random forest 58 12 12 37 95 24
Adaptive Boosting 52 9 18 40 92 27

to its utilization of the new feature introduced in Orange Software, as demonstrated
in Fig. 1. In summary, the confusion matrix assessed the model’s effectiveness and
classified instances into TP, FP, FN, and TN. Logistic Regression outperformed other
models, achieving high classification accuracy and minimal misclassification. All models
demonstrated lower false positive rates than false negative rates, correlating with fewer
Type I and more Type II errors.

As depicted in Fig. 1, the key predictor of positive court performance was the number
of resolved cases during a specified period. The number of cases referred to a court judge
also played a significant role in predicting positivity. Since, red colour represents higher
feature value, while blue colour is a lower value and the positive points (points right
from the centre) in Fig. 1 are feature values with the impact toward the prediction for
the selected class, Obviously, Increasing the number of resolved cases and reducing the
number of referred cases leads to an increase in the performance of the courts. Fig. 2
can help us to determine which features most contributed to the prediction (features with
longer tape length) and how they affect it. So, the number of resolved cases during the
specified period emerged as the key contributor to increase the probability of positive court
performance. In other word, as the number of resolved cases increases, the probability of
positive court performance also tends to increase. Also, the probability of positive court
performance tends to decrease with increasing the number of referred cases. The average
probability of positive court performance in this dataset (baseline probability) is 0.52

3 Conclusion

In summary, our paper utilized machine learning techniques to classify court performances
by analyzing past court behaviour. Although the broad field of automatic legal analysis
has a lengthy history, we focus solely on machine learning in this study. Our results
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Figure 1: The ranking of the impact of the variables obtained using logistic regression model.

Figure 2: Features Importance based on all AUC, CA, F1-score, precision, and recall scores in logistic
regression model.

show that machine learning techniques, specifically logistic regression, Gradient Boosting,
neural network, and Stochastic Gradient Descent (SGD) models, effectively predict court
performance positivity using ten indicators for data collected from a trial court department
of the Judiciary of Tehran jurisdictions, Tehran, Iran. The data mining models showed
varying levels of classification accuracy, with Logistic Regression outperforming the others.
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Our study adds to the growing support for data mining models’ use in detecting court
performance, which could be used to develop decision support systems that enhance the
positivity rate of monitoring and evaluating court performance in Iran, increasing public
confidence in the judicial system. However, it’s worth noting that disparities in the data
could affect the results’ accuracy, such as differences in features, variables, and model
type used. While the precision of our data mining models could have been better with a
more significant amount of data, this study was limited by the quantity available to us.
Properly managing historical data in jurisdictions is highly recommended for researchers
seeking to improve the precision of data mining models’ court performance predictions.
In conclusion, our study contributes to the ongoing effort to enhance the monitoring and
evaluation of court performance in Tehran, Iran. We hope that our findings will inspire
further research on the range of possible applications of machine learning techniques in
the legal field, which could provide deeper insights into predicting court performance with
greater precision, ultimately aiding in the administration of justice.
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Abstract:
In this article, we utilized pairwise and weighted pairwise likelihood functions to esti-

mate the parameters of Spatial Generalized Linear Mixed (SGLM) models. Subsequently,
we applied the penalized pairwise likelihood function to enhance the accuracy of parameter
estimation for the model. In a comprehensive simulation study, we assessed and compared
the accuracy of parameter estimations achieved through the pairwise, weighted, and pe-
nalized pairwise likelihood, using the mean squared error as the evaluation criterion. Next,
we employed the penalized pairwise likelihood method to analyze a real dataset. Finally,
the discussion and results are presented.
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likelihood.
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1 Introduction

Generalized linear models were first introduced by Nelder and Wedderburn (1972), while
McCullagh (1989) employed these models to modeling discrete response variables. To
represent the correlation of spatial responses, a Spatial Generalized Linear Mixed (SGLM)
model can be used. Unlike linear models, the likelihood functions for SGLM models do
not offer a closed form owing to the non-Gaussian nature of the response variable; the pa-
rameters can not, hence, be estimated using the maximum likelihood method. Therefore,
most articles accept the assumption of latent variables’ normality and provide a solution
to estimate model parameters and latent variables by maximizing likelihood functions,
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penalized quasi-likelihood, or hierarchical likelihood using numerical methods. Among
others, McCulloch (1997) utilized maximum likelihood algorithms for GLM models with
non-spatial random effects using numerical methods such as Monte Carlo Expectation
Maximization (MCEM). Recent studies have examined other approximate methods, which
are not based on the complete likelihood of observations. Compared to the approximate
likelihood methods, the advantage of these methods is the presumed lack of need for simul-
taneously modeling all the observations. Wedderburn (1974) employed quasi-likelihood
functions, a subclass of composite likelihood methods. Varin et al. (2005) used the pair-
wise composite likelihood method for SGLM models, in which a novel EM algorithm that
uses numerical quadrature was introduced. Bevilacqua et al. (2010) used the weighted
likelihood function for the spatio-temporal data and proved it is a good approximation
of maximum likelihood. We employed the pairwise likelihood function for SGLM mod-
els, following which the weighted pairwise likelihood function was developed and hence
used to estimate the parameters of the models. Moreover, the penalized pairwise like-
lihood function was used to increase the accuracy of the model parameters estimations.
In a simulation study, the accuracy of the model parameter estimations using pairwise
likelihood, weighted pairwise likelihood, and penalized pairwise likelihood was evaluated
and compared using the Mean Squared Error parameter. Finally, the penalized pairwise
likelihood method was used to analyze two real data sets.

2 Spatial Generalized Linear Mixed Models

Let Y (s) be a discrete spatial response variable, Z1(s), . . . , Zp(s) are covariates and
{X(s), s ∈ R2} is a latent spatial random field, where X(s) is a random effect at lo-
cation s. Diggle et al. (1998) defined a SGLM model as:
(a) Let {X(s), s ∈ R2} be a zero mean stationary Gaussian random field with spatial
covariance function C(h; θ) = Cov(X(s + h), X(s)), where θ ∈ Rk is the correlation pa-
rameter.
(b) Given {X(s), s ∈ R2}, Y (s) is a set of independent random variables and the distri-
bution of Y (s) characterized by the conditional mean E[Y (s)|X(s)].
(c) For every link function g and regression parameters, we have g{E[Y (s)|X(s)]} =∑p

j=1 Zj(s)βj +X(s).
(d) Conditional distribution of [Y (s)|X(s)] belongs to the exponential family.

3 Weighted Pairwise Composite Likelihood Function

The composite likelihood function is obtained by multiplying a set of likelihood compo-
nents, in which each likelihood component represents a subset of observations. Inference
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based on the likelihood function for particularly voluminous data is associated with inte-
grating and inverting high-dimensional matrices, which may be difficult to solve even for
more powerful computers. Using the composite likelihood function, these multiple inte-
grals can be converted into the sum of integrals with lower dimensions. An example of
the composite likelihood function is the weighted pairwise composite likelihood function.
Bevilacqua et al. (2010) applied the weighted likelihood function to space-time data and
showed that composite likelihood weighted estimators are consistent and asymptotically
Gaussian with a variance equal to the inverse of the Godambe function. They also showed
with simulation studies that this estimate approximates the maximum likelihood estimate
and requires far fewer calculational overloads than the maximum likelihood and composite
likelihood estimates. Joe and Lee (2009) applied the weighted composite likelihood func-
tion to categorise data with a variable number of categories and examined the asymptotic
relative efficiency measure for different weights. The results implied that weighting the
composite likelihood function increases the asymptotic relative efficiency. The logarithm
of the weighted pairwise composite likelihood function can be represented as follows

ℓw(θ; y) =
n−1∑
i=1

n∑
j=i+1

wij log f(yi, yj; θ). (3.1)

where

wij =

 1 ||si − sj|| ≤ ds,

0 O.W,

here ds represents the distance between spatial points. As such, the weighted pairwise
composite maximum likelihood estimation of θ that maximizes the function (3.1) under
regularity conditions is equal to the unique solution of the equation u(θ; y) = ▽θℓw = 0.
The pairwise likelihood function for SGLM models is as follows:

LW (η; y) =
∏

(i,j)∈χ

L(η|yi, yj) ∝
∏

(i,j)∈χ

∫ ∫
f(yi|xi)f(yj|xj)f(xi, xj|η)dxidxj, (3.2)

where χ is the pairwise neighborhood set of (yi, yj).

3.1 Penalized Pairwise Likelihood Function

The maximum likelihood method in parameter estimation in various problems is some-
times plagued with overfitting, low accuracy, or high variance of the estimators. Penal-
ization of the likelihood function is a solution to alleviate the behavior of estimators
mentioned above by the usual maximum likelihood method, called the penalized maxi-
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mum likelihood method (Azzalini and Valle , 2013). For extensive spatial data, where
obtaining the likelihood function analytically is extremely difficult, the composite likeli-
hood function can be employed to estimate the parameters. The composite likelihood
function approximates the likelihood function of observation, and hence estimators based
on this function may have low accuracy. The penalized likelihood function can be, as such,
used to improve the estimation accuracy in SGLM models, in which a penalty function
is embedded in the logarithm of the likelihood of observations. For SGLM models, the
penalized pairwise likelihood function is given by ℓ(η; y) = ∑

i

∑
j>i log f(yi, yj; η)−λJ(η),

where λ is the smoothness parameter and J(η) is the penalty function, which can be
selected using various methods. For example, Tibshirani (1996) presented the Lasso
penalty as Jλ(η) = λη for estimation in linear models. Here, Lasso and Green (1990)
(2ηηT ) functions were used for penalization where η = (β0, β1, σ

2, ϕ) is the vector of model
parameters.

3.2 Expectation Maximization Algorithm

Varin et al. (2005) presented a pairwise EM algorithm for maximizing the likelihood.
Based on this algorithm, in the E step, the value of conditional expectation is selected as
follows

Q(η|η(m)) =
∑

(i,j)∈χ

∫ ∫
log{f(xi, xj, yi, yj; η)}f(xi, xj|yi, yj; η(m))dxidxj. (3.3)

In the M step, the value η(m+1) is selected such that Q(η(m+1)|η(m)) ≥ Q(η(m)|η(m)). If the
conditional expectation cannot be expressed in a closed form, it can be approximated nu-
merically. Varin et al. (2005) presented the Quadrature Pairwise EM (QPEM) algorithm

Approximate EM Algorithm:

• Step 1: Approximate E step: the conditional expectation value of (3.3) in the
penalized EM algorithm is approximated with the value of Q̂(η; η(m)).

• Step 2: Generalized M step: the value of η(m+1) is chosen such that Q̂(η(m+1)|η(m)) ≥
Q̂(η(m)|η(m)).

• Step 3: Reiterate Steps 1 to 3 of the algorithm until convergence.

for SGLM models and showed that its speed is more than the MCEMG algorithm. To
solve the double integral of (3.3) the vector (xi, xj)T is transformed into the standardized
components of (νi, νj), where νi = xi

σ
and νj = xj−ρijxi

σ
√

1−ρ2
ij

and ρij = ρ(si − sj;α). Now the
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approximate value of Q(η; η(m)) is as follows

Q̂(η; η(m)) =
n∑

i,j=1

k∑
k1,k2=1

log f(xi(h(k1)), xj(h(k1), h(k2)), yi, yj; η)wij(k1, k2; η(m)),

wij(k1, k2; η(m)) = f(yi|xi(h(k1); η(m))f(yj|xj(h(k1), h(k2)); η(m))ℓ(k1)ℓ(k2)∑
k1,k2 f(yi|xi(h(k1); η(m))f(yj|xj(h(k1), h(k2)); η(m))ℓ(k1)ℓ(k2)

Here, h(k) are the nodes and ℓ(k) are the weights.

4 Simulation Study
In this study, composite likelihood, pairwise composite likelihood, and penalized compos-
ite likelihood functions are used, and the accuracy of each of these functions is checked
through the MSE criterion. A neighbourhood with a radius of 4 is used for each observa-
tion. If we want to use all 48 neighbours for each point in the model, there are 48n = 10800
pairs, which is far less than all possible ordered pairs, i.e., n(n−1)/2 = 25200. The QPEM
algorithm with M = 4 × 4 nodes of Gauss-Hermite quadrature was used to estimate the
parameters. Now 15 pairs from radius four neighbours are randomly selected for each
observation, which is shown in Figure 1. This would, in turn, reduce the number of
observations to 15n = 3375. The parameters were estimated using pairwise likelihood
and weighted pairwise likelihood function, and the accuracy was compared through the
MSE criterion. Results were obtained for 100 datasets. Different values of ds were in-
putted in the function (3.1) to obtain the optimal value of the weight function. Consider
a matrix of Euclidean distance between spatial points and sort them from smallest to
largest, then ds’s are function of the quantiles of this values. For this research we consider
ds = q(0.4), q(0.6), q(0.8), q(0.9). The results of the simulations are presented in Table 1.

Figure 1: Sampling pairs within a neighborhood of radius 4. Here, × is the observation
location and the filled circles are 15 neighbors sampled at random without replacement.
The contributing pairs consist of × and each of the 15 sampled neighbors.

The effect of weighting the pairwise likelihood function on the accuracy of SGLM
model was also examined, with Poisson response and logarithm link function. The data
is generated from a 25 × 25 regular grid with nodes {(s1, s2) : s1, s2 = 0, 0.04, . . . , 1}. To
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generate the spatial latent variables X, the normal distribution N(0,Σθ), the isotropic
exponential covariance function C(h) = σ2 exp(−3h/ϕ), h > 0, and the values σ2 = 1.5,
β = (β0, β1) = (1, 0.5) and ϕ = 6 are considered. The explanatory variable in each position
s = (s1, s2) is considered as Zs = s1. The response variable, Ys is also generated by condi-
tioning on spatial latent variables from distribution Ys ∼ Poisson(n, exp(β0 + β1zs + xs))
where n = 25×25 is the number of samples. To avoid singularity, logarithm transformation
was used to maximize the parameters of random effects. That is, the parameters were σ2

and ϕ inputted in the model as log σ2 and log ϕ. The relation maxi|η(m+1) −η(m)|/|η(m)| <
0.0005 was used as the criterion of convergence. To obtain the initial values, the regression

Table 1: Estimation of SGLM model based on pairwise and weighted pairwise likelihood
functions

Likelihood Weight Parameter Estimate MSE SE
β0 0.842 0.1580 0.0377

Pairwise 1 β1 0.565 0.0934 0.0305
σ2 1.230 0.1137 0.0177
ϕ 5.640 3.4111 0.1826

β0 1.552 0.8563 0.0374
q(0.4) β1 0.327 0.5946 0.0307

σ2 1.196 0.9116 0.0176
ϕ 6.105 14.054 0.3756

β0 0.807 0.1702 0.0336
q(0.6) β1 0.474 0.1170 0.0312

σ2 1.470 0.1042 0.0187
Penalized ϕ 5.830 6.8114 0.3756

β0 0.883 0.1052 0.0380
q(0.8) β1 0.469 0.1167 0.0300

σ2 1.554 0.1111 0.0184
ϕ 5.907 3.3143 0.3677

β0 0.922 0.1120 0.0327
q(0.9) β1 0.519 0.0900 0.0343

σ2 1.511 0.0970 0.0166
ϕ 6.041 3.4819 0.1849

parameters β0 and β1are estimated without considering the random variable and using
a simple GLM model. Then, using the link function, the observed values are converted
and the remaining values are estimated in the form of r̂(si) = g(yi) − xi

ˆ
β(0), i = 1, . . . , n.

According to the results in Table 1, the weighted pairwise composite likelihood outper-
forms the pairwise composite likelihood function when ds is equal to q(0.8) or q(0.9) of
the maximum distance between spatial points. Moreover, the outputted values for these
two inputs were similar, implying that excluding the outlying pairs from the likelihood
function would not result in substantial information loss and the model parameters can
be estimated with acceptable accuracy even with fewer pairs.

Two penalization functions, Lasso and 2ηηT , were used for ηT = (σ2, ϕ)T . QPEM
algorithm estimates the parameters, maximizing Q(η|ηm) − λJ(η) in the M step. Table 2
indicate that MSE and SE criteria in estimating the model parameters using the penalized
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pairwise likelihood function for both penalty functions are lower than those of the pairwise
likelihood function. That is, the pairwise likelihood function can significantly increase
parameter estimation accuracy. Also, the results indicate that the lasso penalty function
outperforms that of the Green (1990).

Table 2: Estimation of SGLM models with pairwise and penalized pairwise likelihood
functions

Likelihood Parameter Estimate MSE SE
Pairwise σ2 1.483 0.114 0.0177

ϕ 5.640 3.411 0.1826

Penalized with Lasso σ2 1.506 0.071 0.0169
ϕ 1.895 1.925 0.1504

Penalized with Green σ2 1.489 0.093 0.0169
ϕ 1.895 2.252 0.1504

5 Data Analysis
A real dataset was employed to check the performance of composite likelihood functions
based on the QPEM algorithm. The dataset contains counts of Rhizoctonia root rot
disease in barley collected at 100 sampling sites at Cunningham Farm in the northwestern
United States. For each sampling site, 15 plants were pulled out from the ground for
examination. A binomial SGLM model with a logit link function, a constant mean, β0,
and an exponential correlation function C(h) = (1 − τ 2)σ2 exp(−h

ϕ
) was used for the

spatial random effect. Furthermore, the penalized composite likelihood function with
Lasso and Green penalty functions was implemented to estimate the SGLM model. Also,
the method mentioned in Section 4 was used to obtain the initial values, the results of
which are shown in Table 3.

Table 3: Estimation of SGLM models with pairwise and penalized pairwise likelihood
functions

Method
Parameter Lasso penalty Green penalty Weighted pairwise likelihood

β0 −1.69 −1.75 −1.73
σ2 0.15 0.09 0.18
ϕ 149.08 152.65 148.4
τ2 0.58 0.61 0.46

Discussion and Resuls
This research used pairwise likelihood, weighted pairwise likelihood, and penalized pair-
wise likelihood functions for spatial generalized linear mixed models. Furthermore, the
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QPEM algorithm was used to maximize these functions. The simulation study showed
that the weighted pairwise likelihood function and the penalized pairwise likelihood func-
tion outperformed the pairwise likelihood function in estimating the parameters of the
SGLM model. The findings further established that the penalized pairwise likelihood
function was more accurate than other functions in estimating the correlation parameters.
Compared to the weighted pairwise likelihood function, the penalized pairwise likelihood
function has higher accuracy in estimating σ2 and ϕ. Also, Lasso penalized function
exhibited better results than the Green penalized function among penalized composite
likelihood functions. The results were analyzed and compared for a real data set with
binomial distribution. Overall, the results of the current study showed that the proposed
functions outperformed other functions in estimating the parameters of the SGLM model.
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Abstract:
Spatial Survival Tree is a modeling approach used to analyze time-to-event data in

the presence of spatial dependency and predictive covariates. This method is capable
of dividing the data into subgroups, each associated with a relevant survival curve, and
calculating the probability of survival for individuals in each group over time, taking into
spatial-temporal survival correlations. Additionally, it utilizes criteria such as spatial lo-
cation and event timing to further partition the data into smaller groups. The structure
of the tree enables the identification of subgroups of individuals or spatial locations that
possess unique survival characteristics while facilitating the selection of influential predic-
tive variables on survival time. Simulation results conducted in this study demonstrate
that the Spatial Survival Tree exhibits a higher efficacy in analyzing survival data with
spatial structure, contributing significantly to improved accuracy and efficiency in the
analysis of spatial survival data.

Keywords: Survival Data, Tree-based Algorithm, Spatial Survival Tree.
Mathematics Subject Classification (2010): 62M30, 62H30, 62N05.

1 Introduction
A spatial survival tree is a statistical method used to model the relationship between spa-
tially dependent survival times and a set of independent variables on a spatial reference
dataset. It utilizes a recursive binary partitioning algorithm to divide the study area
into multiple regions or ”nodes” with distinct survival characteristics. Separate survival
models are then fitted for each node. This method is particularly valuable when survival
time is influenced by both spatial and non-spatial variables, and when the spatial struc-
ture of the data is important for analysis. It can identify spatially distinct regions with
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different survival features and determine the variables that have the strongest association
with survival time in each region (Breiman , 2001). The applications of spatial survival
trees span various fields such as medicine, geology, and environmental science (De’ath
and Fabricius , 2000). This method offers a novel approach to analyzing survival data,
considering spatial dependency, and can aid in identifying regions with different survival
characteristics. Notably, it can be applied to modeling survival in contagious diseases
like COVID-19, which are influenced by spatial variables. By utilizing spatial survival
trees, healthcare professionals can identify regions with different survival features within
a specific geographical area and identify variables strongly associated with survival time in
each region. This information can assist in selecting appropriate treatments for patients
with similar survival characteristics. Additionally, spatial survival trees have applications
in geology and environmental science, contributing to the identification of regions with
similar characteristics and the identification of variables associated with survival time in
each region.

2 Structure of Spatial Survival Tree

The structure of a spatial survival tree is similar to a decision tree, with the difference
that spatial information is also taken into account in the analysis of survival data. This
means that the root of the tree represents all individuals or spatial locations in the study
area. Then, the tree is divided into smaller partitions recursively based on a splitting rule.
This splitting rule usually includes one or more predictor variables, such as age, gender,
and information related to spatial-temporal correlations in survival. The division process
continues until a stopping condition is met, such as a minimum number of individuals in
each sub-region or a minimum level of homogeneity within each sub-region. At this point,
each sub-region is assigned a unique label or ”terminal node” corresponding to a specific
combination of predictor variables and geographic location.

After constructing the tree, predictions can be made for any new individual or location
in the tree and assigned to the appropriate terminal node. Ultimately, the probability
of survival for that individual or location is estimated based on the survival function
associated with the corresponding terminal node. Calculate the survival probability for
each terminal node, typically depends on a specific type of survival analysis model, such
as the Cox proportional hazards model or the accelerated failure time model. In a spatial
survival tree, the calculation of survival probability for a new individual or location is
based on the survival function associated with the terminal node it belongs to. To calculate
this probability, the survival function relevant to the desired terminal node needs to be
computed. The Cox model and accelerated failure time model are examined for two
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scenarios. (Bou-Hamad and Benoit , 2013). The calculation of survival probability for
each terminal node usually relies on a specific type of survival analysis model, such as
the Cox proportional hazards model or the accelerated failure time model. (Therneau
and Grambsch , 2000). In a spatial survival tree, the calculation of survival probability
for each new individual or location is based on the survival function associated with the
corresponding terminal node. To calculate this probability, the survival function relevant
to the desired terminal node needs to be computed. In the following, the Cox model and
accelerated failure time model are examined for two scenarios.

1- The Cox proportional hazards model with spatial random effect defines the survival
function associated with a terminal node as follows:

S(t|X,Z(s)) = S0(t)exp(β1x1+β2x2+...+βpxp+Z(s)) (2.1)

In this equation, S(t|X,Z(s)) represents the probability of survival of an individual at
time t and in position s. Also, Z(.) represents a spatial random field. Given the values
of the predictor variables X, S0(t) is the baseline survival function chosen by the user.
β1, β2, ..., βp are the coefficients of the model, which are determined using estimation and
fitting methods with training data (Motarjem et al. , 2020).

2- The accelerated failure time model with spatial random effect defines the survival
function associated with a terminal node as follows:

S(t|X) = S0(
t

exp(β1x1 + β2x2 + ...+ βpxp + Z(s))
) (2.2)

In this equation, S(t|X,Z(s)) and S0(t) represent the probability of survival of an individ-
ual at time t in position s given the values of the predictor variables X and the baseline
survival function, respectively. β1, β2, ..., βp are the coefficients of the model, which are
determined using estimation and fitting methods with training data. By calculating the
survival function associated with a terminal node, the probability of individual survival
at time t can be computed based on the predictor values. Additionally, Z(.) represents a
spatial random field. Generally, the probability of survival in a terminal node is calculated
using the corresponding survival function of that node and the desired time.

To construct a spatial survival tree, the data containing predictor variables and sur-
vival time need to be collected. Then, based on this data, the spatial survival tree is built.
The algorithm used for constructing the spatial survival tree is typically the ”Greedy”
algorithm (Cormen et al. , 2009). In this algorithm, a base node is first selected for the
tree, and then additional nodes are gradually added to the tree until a complete spatial
survival tree is constructed. To select the next node, a stopping criterion should be de-
fined. The stopping criterion serves as a condition under which the selection of the next
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node is halted (Hastie et al. , 2009). There are various criteria for this purpose, but two
common criteria for stopping the spatial survival tree are:

• Partitioning Event: In this method, the tree is recursively partitioned to determine a
stopping condition for adding new nodes. For example, the tree may be recursively
divided into two sub-trees if the survival probability of an individual at different
times varies significantly based on different predictor variables. In this case, the
tree is recursively partitioned until the survival probability of an individual at each
time is approximately the same.

• Number of Nodes: In this method, the number of nodes in the tree is used as a
stopping criterion. For example, the tree may continue recursively as long as the
number of nodes in the tree is less than a specified maximum value.

The mentioned criteria are used in constructing spatial survival trees. Below is a
concise statement of the important partitioning theorem (Breiman et al. , 1984):

Theorem 2.1. Partitioning Theorem: Let the data consist of a set of predictor vectors
and survival time vectors represented as follows:

D = (x1, t1), (x2, t2), ..., (xn, tn)

Let S be a subset of D containing m points. Also, let SL and SR be two other subsets of
S defined as follows:

SL = (xi, ti) ∈ S|xi ≤ xL

SR = (xi, ti) ∈ S|xi > xL

Here, xL is a fixed value used for partitioning the data, so we can say that S is divided
into two subsets, SL and SR, based on xL. Now, if we define the sum of squared errors
for each of these two subsets as follows:

RSSL =
∑

(xi,ti)∈SL

(ti − t̂L)2

RSSR =
∑

(xi,ti)∈SR

(ti − t̂R)2

where t̂L and t̂R are the predicted mean survival time for individuals in SL and SR, respec-
tively. Then, if S is split into SL and SR, the following quantity is minimized:
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RSStotal = RSSL +RSSR

Therefore, the splitting stopping criterion is defined as:

∆RSS = RSSparent −RSStotal

Here, RSSparent is the sum of squared errors for all data points in S. Based on this
definition, the partitioning theorem can be stated as follows:

To achieve the best split on the data, we need to calculate ∆RSS for each possible
partition and select the one with the largest ∆RSS.

After constructing a spatial survival tree, the partitioning and stopping criteria can be
used for analyzing and predicting new data. Using the spatial survival tree, the probability
of an individual’s survival at different times can be calculated based on the values of
predictor variables, and this information can be used for predicting other outcomes.

3 Spatial Survival Tree
To construct a spatial survival tree, we begin by partitioning the data based on the values
of predictive variables and spatial coordinates. If D is the set of observations and S is a
subset of D, we can express the partition as follows:

D = S1 ∪ S2

where S1 and S2 are disjoint subsets of D. To determine the optimal partition between
S1 and S2, we employ the logarithmic rank test statistic, which measures the difference in
survival between the two subsets (Lehmann , 1959). The logarithmic rank test statistic
is defined as follows:

LR(S1, S2) = (O1 − E1)2

V1
+ (O2 − E2)2

V2

In this equation, O1 and O2 represent the observed event counts in S1 and S2, while
E1 and E2 represent the expected event counts in S1 and S2 under the assumption of no
difference in survival, and V1 and V2 denote the variances of O1 and O2, respectively.
After identifying the optimal partition, a proportional hazards model is fitted for each
subset. This involves estimating the coefficients β for each subset, which capture the
impact of the predictive variables on the hazard function within that subset. The process
of data partitioning based on predictive variables and spatial coordinates continues recur-
sively and persists until a stopping criterion, such as a minimum number of observations
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in each subset, is reached. The resulting tree can be used to predict the survival time of
new observations based on their predictive variable values and spatial coordinates.

4 Simulation
In this study, the objective is to compare the performance of a classical survival tree model
with a spatial survival tree model. The classical survival tree considers only the predic-
tive variables, while the spatial survival tree incorporates information related to spatial
correlation alongside the predictive variables. By examining their performance based on
common criteria, we can evaluate the advantages of considering spatial information in
survival analysis. The steps involved in this simulation are as follows:

1. Variable Generation: We simulate two independent random variables, X1 and X2.
Variable X1 follows a normal distribution with a standard deviation of one and a mean
of zero, while variable X2 follows a uniform distribution between zero and one.

2. Spatial Correlation Structure: To introduce spatial correlation among the obser-
vations, we generate a spatial survival variable, S, using a spatial autocorrelation model.
We consider a spatial exponential correlation model based on the distance between the
observations. The spatial survival variable S for observation i is calculated as follows:

Si =
n∑

j=1
exp(−α · dij) ·X2j

Here, Si represents the spatial survival variable for observation i, dij denotes the dis-
tance between observations i and j, X2j represents the value of variable X2 for observation
j, and α is a spatial decay parameter that controls the strength of spatial correlation. In
this simulation, we set α = 0.5.

3. Survival Time Generation: Survival times, T , are calculated using a Cox propor-
tional hazards model that incorporates variables X1, X2, and S. We use a Cox propor-
tional hazards model with relative risks:

h(t|X1, X2, S) = h0(t) exp(β1X1 + β2X2 + β3S)

Here, h(t|X1, X2, S) represents the hazard function at time t considering the values of
variables X1, X2, and S, h0(t) is the baseline hazard function, and β1, β2, and β3 are the
coefficients associated with variables X1, X2, and S, respectively, all set to 1 for simplicity.

The table below compares the performance of the spatial survival tree and the classical
survival tree:

Based on common criteria of accuracy, sensitivity, and precision, the spatial survival
tree model outperforms the classical survival tree model. The spatial survival tree model
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Table 1: Performance Comparison of Spatial Survival Tree and Classical Survival Tree

Model Accuracy Sensitivity Precision
Spatial Survival Tree 0.85 0.80 0.90
Classical Survival Tree 0.70 0.65 0.75

achieves an accuracy of 0.85, correctly predicting survival outcomes in 85% of cases, and
has a sensitivity of 0.80, accurately identifying the presence of survival in 80% of positive
cases. Furthermore, the precision of the spatial survival tree model is 0.90, indicating that
when it predicts a positive survival outcome, it is correct in 90% of cases. In contrast,
the classical survival tree model exhibits poorer performance. It has an accuracy of 0.70,
correctly predicting survival outcomes in 70% of cases, and a sensitivity of 0.65, accurately
identifying the presence of survival in 65% of positive cases. Additionally, the precision
of the classical survival tree model is 0.75, indicating that when it predicts a positive
survival outcome, it is correct in 75% of cases.

Conclusion

Generally, in this study, a spatial survival tree was compared to a classical survival tree
in the context of survival data with spatial correlation. The results demonstrate that
in the presence of spatial correlation, the spatial survival tree performs better. This
finding was also confirmed in our sampling, where the spatial survival tree showed superior
performance in identifying the desired spatial structure and its coherence with survival
analysis. The ability of the spatial survival tree to consider spatial dependencies in survival
data provides reliable insights and more accurate predictions, describing it as a promising
tool for analyzing survival data with spatial correlation.
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Abstract:
The issue of treating unbalanced count data distributions in spatial count analysis

prompts inquiries over the appropriateness of the Poisson model. Furthermore, more
than traditional methods are required when straightforward parametric models do not
capture the associations between variables because of the inclusion of covariates with un-
clear functional forms and complex or unspecified spatial patterns. To tackle these issues,
we propose the implementation of an innovative Bayesian hierarchical modeling approach.
This methodology combines non-parametric methods with a modified dispersed count
model based on renewal theory, enabling us to effectively address challenges associated
with count data exhibiting non-equivalent dispersion, nonlinear connections between vari-
ables, and intricate spatial patterns. In order to showcase the adaptability and efficacy
of our proposed approach, we employ it to examine empirical lung cancer data obtained
from Pennsylvania, United States.

Keywords: Bayesian spatial model, Count data, Semi-parametric, Over-dispersion, Under-
dispersion, INLA.
Mathematics Subject Classification (2010): 62J12, 62F15, 62H11.

1 Introduction

Spatial count data play a pivotal role in diverse fields, encompassing disease mapping, en-
vironmental studies, ecology, sociology, crime analysis, and public health. While spatial
generalized linear mixed models (SGLMMs) have become a popular choice for analyzing
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such data, certain scenarios necessitate greater flexibility due to the intricate relation-
ships between variables and the presence of complex or unkown spatial patterns. In these
instances, conventional parametric models often face difficulties in capturing nuanced
characteristics of the data. To address these challenges, non-parametric methods offer a
promising alternative. They enable us to adapt to unknown relationships, intricate depen-
dency patterns, and circumvent the limitations of predefined functional forms (Illian et al.
, 2013). By embracing non-parametric techniques, we empower the data itself to dictate
the relationships, thus providing a more robust approach that minimizes misspecification
bias. Additionally, when confronted with complex spatial patterns, non-parametric mod-
els frequently outperform their parametric counterparts. Consequently, adopting models
with sufficient flexibility becomes imperative. Our utilization of a structured additive re-
gression (STAR) (Kneib et al. , 2009) framework equips us with the capability to capture
non-linear covariate relationships and various types of spatial dependencies.

Count data analysis often relies on the Poisson regression model, a component of
generalized linear models. However, real-world count data often exhibit over- or under-
dispersion, making the Poisson model unsuitable. Various extensions and alternatives
have emerged to address these challenges, such as generalized linear mixed models and the
negative binomial regression.Additionally, hurdle models, alternative distribution models
(e.g., COM-Poisson, Poisson-Tweedie distribution) have been employed (Cameron , 2013).
Winkelmann (1995) proposed an alternative approach to model non-equivalent-dispersed
counts using renewal theory (Cox , 1962). This approach employs a less restrictive, non-
exponential distribution with a non-constant hazard function for durations (waiting times)
between events. Winkelmann linked models for counts and durations, thereby relaxing
the equi-dispersion assumption at the expense of an additional parameter. Furthermore,
he observed that a decreasing (increasing) hazard function results in negative (positive)
duration dependence, which explains how negative duration dependence leads to over-
dispersion and positive duration dependence leads to under-dispersion. Recent work has
extended this approach to spatial modeling, as evidenced by Nadifar et al. (2023),
who expanded the GC model for analyzing spatially correlated count data. Furthermore,
Nadifar et al. (2021) introduced the GC STAR model, which offers enhanced applicability
in spatial contexts.

In this paper, we address the challenge of modeling spatial count data with varying
levels of dispersion by uniting renewal theory with popular semi-parametric approaches
within a Bayesian framework. Our dual objectives are to model count responses with
non-equivalent dispersion, particularly when covariate-response relationships are uncer-
tain and spatial patterns exhibit complexity or uncertainty, and to explore the practical
implications of this approach.
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The remainder of this paper is organized as follows: Section 2 provides a brief overview
of the spatial GC regression model with semi-parametric approaches, while Section 3 elab-
orates on the methodology for the Bayesian semi-parametric spatial GC model. In Section
4, we apply the methodology to analyze clinical data related to lung cancer mortality in
Pennsylvania, USA. The paper concludes with a concise discussion in Section 5.

2 GC Structured Additive Regression Model

2.1 Gamma-Count Distribution

We provide a concise overview of the fundamental characteristics of the GC distribution.
From a statistical standpoint, there exists a unique relationship between the distribution of
cumulative waiting times and count distributions, which can be leveraged to develop novel
count data distributions. The inception of the GC distribution traces back to Winkelmann
(1995), and it is grounded in the concept of waiting times being gamma-distributed.

Consider a sequence of waiting times {uk, k ≥ 1} representing the intervals between
the (k − 1)th and kth events. Consequently, the arrival time of the nth event can be
expressed as ϑn = ∑n

k=1 uk, for n = 1, 2, . . .. Let Yt denote the total count of events
occurring between time 0 and t. Thus, {Yt, t > 0} forms a counting process, and for any
fixed t, Yt represents a count variable. The statistical properties of this counting process
(and subsequently of the count variable) are completely defined once we have access to
the joint distribution function of the waiting times, {uk, k ≥ 1}. In essence, Yt < n if
and only if ϑn > t. As a result, the probability mass function of Yt can be expressed
as fYt(n) = Fn(t) − Fn+1(t), where Fn(T ) denotes the distribution function of ϑn. In
general, Fn(t) entails a complex convolution of the underlying densities of uk, rendering it
analytically intricate. Nevertheless, a notable simplification emerges when we assume that
{uk, k ≥ 1} comprises independently and identically gamma-distributed random variables
with parameters Gamma(α, γ). In this scenario, where the mean is E(uk) = α/γ and the
variance is Var(uk) = α/γ2, it can be demonstrated that if Yt signifies the count of events
within the interval (0, t), it follows a GC distribution with parameters α and γ, denoted
as Yt ∼ GC(α, γ). The probability mass function of Yt takes the form:

fYt(y) = G(yα, γt) −G((y + 1)α, γt), y = 0, 1, 2, . . . , (2.1)

where G(nα, γt) = 1
Γ(nα)

∫ γt
0 vnα−1e−vdv, and G(0, γt) = 1. Furthermore, the mean of the

GC distribution can be computed as E(Yt) = ∑∞
k=1 G(kα, γt).

It’s important to note that for non-integer values of α, closed-form expressions are
unavailable for G(yα, γt), and consequently for fYt(y) and E(Yt). In the case of α = 1,
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the distribution of uk reduces to the exponential distribution, leading to a simplification
of (2.1) to the Poisson distribution with the parameter γt. Significantly, when α > 1,
indicating positive duration dependence, the GC distribution exhibits under-dispersion.
Conversely, for 0 < α < 1, representing negative duration dependence, the GC distribu-
tion tends towards over-dispersion.

2.2 Semi-Parametric Spatial GC Regression Model

To construct the semi-parametric spatial GC regression model, we delve into the realm of
hierarchical spatial modeling for count data aggregated across spatially indexed units like
regions, districts, or countries. Let Y = (Y1, . . . , Yn)′ denote the response vector, with
Yi representing the response in the ith area, where i = 1, . . . , n, sampled from the GC
distribution. Estimating E(Yi) directly is challenging due to its complexity, making it
cumbersome to extend a regression model based on the mean. Thus, our semi-parametric
regression model operates on the waiting times uki

rather than Yi, where uki
is the generic

representation of waiting times for the ith observation. Consequently, we express:

E(uki
|x̃i) = α

γi

= exp(−ηi)

ηi = β0 +
J∑

j=1
fj(x̃i) + fs(σi), i = 1, . . . , n (2.2)

where β0 acts as an intercept term representing the overall predictor level. The functions
{fj} model non-linear fixed effects with first- or second- order random walk (RW1 or
RW2), f(·) encompasses a two-dimensional random walk (RW2D) term for spatial effects,
and {σi = (si1, si2), i = 1, . . . , n} denotes the set of geographical centroids. RW2D
models share similarities with thin-plate splines (TPS) models (Dupont et al., 2020) and
can be considered as non-parametric counterpart of intrinsic Gaussian Markov random
field (IGMRF) (Rue and Held, 2005). The joint distribution for fs = (fs(σ1), . . . , fs(σn))′

is defined as:
fs|τs ∼ N

(
0, (τsQs)−1

)
,

where τs and Qs denote the precision parameter and precision matrix of a two-dimensional
second-order polynomial IGMRF, respectively. Please refer to Nadifar et al. (2022) for a
comprehensive understanding of constructing an RW2D model.

Taking into account the inverse relationship between gaps and the number of occur-
rences, the negative sign preceding η in (2.2) signifies the reverse influence of fixed and
random effects on waiting times, contrasting with their impact on counts. In simpler
terms, a longer expected time interval leads to a lower number of occurrences. Conse-
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quently, the GC regression model emerges from inherent parametric assumptions that
encompass the Poisson regression model through a singular parametric constraint. From
(2.2), we can express γi = α exp(ηi). Hence, the semi-parametric spatial GC regression
model can be formulated as follows:

Yi|α,β, ϕi ∼ G (yiα, α exp (ηi)) − G ((yi + 1)α, α exp (ηi)) , i = 1, . . . , n, (2.3)

where α denotes the dispersion parameter. Assessing the marginal likelihood correspond-
ing (2.3) often necessitates dealing with intractable integrals, posing a significant challenge
for implementing likelihood-based inferences. To circumvent these challenges, we develop
the proposed models within a Bayesian framework and leverage the INLA methodology.

3 Semi-parametric Bayesian Learning
To conduct Bayesian analysis for our proposed model, we need to specify appropriate prior
distributions for the model parameters, namely α, β, fx, fs, τx, and τf . These priors should
reflect our prior beliefs about these parameters. We choose penalized complexity (PC)
prior for α (Nadifar et al., 2021),with its hyper-parameter set to 3, an option available in
the INLA. Additionally, we employ PC priors for the precision parameters governing the
spatial effect and x̃’s non-linear effect (Simpson et al., 2017). Moreover, we consider RW2d
for spatial effect and RW1 or RW2 for fixed effects as described in Section 2. These prior
distributions offer the flexibility to capture prior beliefs through the appropriate choice
of hyper-parameters. We assume that these parameters are a priori independent, and by
accepting these priors, the joint posterior density for the proposed model can be expressed
as follows:

π(α, fx, fs, τs, τx|ỹ)∝
n∏

i=1
{GC (α, α exp (ηi))} π(α)RW2(fx)π(τx)RW2D(fs)π(τs). (3.1)

Traditionally, inference for models (3.1) is accomplished using Markov Chain Monte Carlo
(MCMC) sampling. However, it is well-known that MCMC methods encounter issues re-
lated to both convergence and computational time when applied to such complex models
(Rue et al., 2009). In particular, implementing Bayesian inference through MCMC algo-
rithms for large spatial data could take several hours or even days to complete. To address
this challenge, Rue et al. (2009) introduced the Integrated Nested Laplace Approxima-
tion (INLA) method, a deterministic algorithm capable of providing accurate results in
seconds or minutes. INLA combines Laplace approximations and numerical integration
efficiently to approximate posterior marginal distributions. Let θ represent the vector
of hyper-parameters, which is (α, τs, τx)′ for model (3.1). Also, let ψ denote the ℓ × 1



A Bayesian Semi-parametric Spatial Count Model 62

vector of latent variables, which is (β, fx, fs)′, with ℓ determined by the specific model. In
practice, our primary interest lies in the marginal posterior distributions for the elements
of the latent variables and hyper-parameters, given by:

π(ψj|ỹ) =
∫
π(ψj, θ|ỹ)dθ =

∫
π(ψj|θ, ỹ)π(θ|ỹ)dθ, j = 1, . . . , ℓ,

π(θk|ỹ) =
∫
π(θ|ỹ)dθ−k, k = 1, 2, 3,

where θ−k represents θ with the kth element removed. INLA’s crucial success lies in its
ability to compute model comparison criteria, such as the Deviance Information Criterion
(DIC) (Spiegelhalter et al., 2002). Our proposed GC model is already implemented in the
R-INLA package as a family argument with the name ”gammacount.”

4 Lung Cancer Mortality Modeling
Here, we reanalyze the lung cancer mortality data in Pennsylvania, USA, comprising 67
districts for the year 2002. We introduce the ecological covariate x to account for smoking
consumption. This dataset is available in the R package SpatialEpi. We assume that the
observed death counts yi in district i = 1, . . . , 67 are conditionally independent, following
a semi-parametric spatial GC regression model, where ηi is defined as:

ηi = log(Ei) + β0 + f(xi) + g(si), i = 1, . . . , 67, (4.1)

where, Ei, f(·), and g(·) represent the offset, a smoothing functional effect of smoking con-
sumption, and spatial dependency, respectively, as described in Section 2. To investigate
more closely, we also considered the parametric model corresponding to (4.1), as well as
the Poisson model, as competing count models. Table 1 presents the Deviance Informa-
tion Criterion (DIC) values for the proposed model and its alternatives. Table 1 shows

Table 1: Computed DIC values for the semi-parametric spatial model and its corresponding parametric
models for GC and Poisson.

Parametric Semi-parametric
Poisson GC Poisson GC

DIC 104.04 101.42 109.12 98.51

that the semi-parametric spatial GC regression model outperforms other models. Conse-
quently, we present posterior inference for the superior model in Table 2 and Figure 1 for
parameters and smoothing effects of smoking and spatial dependency, respectively. Table
2 displays the estimated parameters with their 95% credible intervals. The estimates of
α and its 95% credible intervals confirm that Pennsylvania data exhibit over-dispersion,
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suggesting that the Poisson model is inappropriate, as indicated in Table 1. The posterior
results for the precision parameter of the spatial effect show that the spatial dependency is
significant. The estimated smoothing precision of smoking consumption effect represents
less uncertainty. Figure 1 presents the posterior inferences for the effect of smoking con-
sumption, revealing an increasing non-linear effect of smoking consumption, which closely
follows a linear behavior. There is a positive relationship between smoking consumption
and lung cancer deaths, indicating that higher smoking consumption increases the risk of
mortality. Furthermore, Figure 1 illustrates the estimated posterior mean of the spatial
effect, showing that people in downtown areas have a lower risk of mortality.

Table 2: Posterior mean estimates and 95% credible intervals of parameters for the semi-parametric
spatial GC regression model.

β0 α τx τs

-0.035 (-0.064,-0.005) 0.82 (0.52,1.18) 21010.5 (1403.92,77243.34) 165.65 (56.44,392.5)

Figure 1: Posterior mean estimates of smoking consumption effect (line) and 95% credible bounds
(dashed) for the semi-parametric spatial GC regression model.

Conclusion
In this paper, we introduced a semi-parametric spatial Gamma-Count (GC) regression
model, which we applied to analyze lung cancer mortality data in Pennsylvania, USA.
Our model outperformed traditional Poisson and parametric GC models, confirming the
data’s over-dispersion and demonstrating the unsuitability of the Poisson model. We
found a positive link between smoking consumption and lung cancer mortality, revealing



A Bayesian Semi-parametric Spatial Count Model 64

a higher risk with increased smoking. Additionally, spatial analysis showed lower mortality
risks in downtown areas, indicating geographical variations. This semi-parametric model
offers a robust framework for analyzing count data with varied dispersion and complex
spatial patterns, particularly relevant for public health research.
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Using the Spatial Position of Aftershocks

Shahrokh Pourbeyranvand∗

International Institute of Earthquake Engineering and Seismology, Tehran, Iran.

Abstract:
In this study, a new method for determining the fault plane using the spatial position

of the hypocenter of aftershocks has been introduced. A conventional method that is
usually used in seismological studies of aftershock sequences is to draw earthquakes on a
map and design several cross-sections in such a way that the spatial distribution of events
can be inferred. In this way, the fault plane can be visualized. In the proposed method
however, the role of human observation and inference is almost eliminated. By using
automatic fitting methods in the 3D environment, the spatial position of seismic events is
used directly to create a surface and then a planar surface which is recognized and fault
plane is fit to it. The geometrical characterization of the fault plane can be achieved by
computer modeling hence.

Keywords: hypocenter, earthquake, focal mechanism, fault, seismicity, location.

1 Introduction

Spatial statistics play an important role in identifying fault planes in seismology. It helps
to analyze the spatial distribution of seismic events and to understand the behavior of
active fault systems https://earthquake.usgs.gov/data/finitefault/. In seismol-
ogy, a fault plane is a surface that shows the location and direction of a fault, which
is a break in the Earth’s crust where rocks on either side have moved relative to each
other. Identifying the fault plane is necessary to study the fault process and determine
the geometry and movement of the fault https://www.sciencebase.gov/catalog/item/
58da9d37e4b0543bf7fdaab3. Spatial statistical techniques are used to analyze seismic
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catalogs and identify significant seismic aftershocks, independent background events, and
clustersź. These techniques help to estimate the background seismicity rate, which is a
critical parameter in seismic hazard analysis. One approach to identifying fault planes
involves using a two-step clustering approach. This approach combines self-organizing
map (SOM) and density-based temporal clustering methods for catalog analysis of earth-
quakes. The SOM phase identifies the main hotspots (SOM prototypes) in the region
based on the event location and depth information. A density-based temporal clustering
step then identifies events in the neighborhood of each SOM prototype, enabling efficient
spatiotemporal analysis and identification of aftershock clusters and background events
(Laesanpura et al. , 2019). The accuracy of fault plane identification can be verified
using statistical parameters such as coefficient of variation (time domain) and m-Morisita
index (spatial domain) (Sainoki et al. , 2023). These parameters help justify and val-
idate the accuracy of the clustering approach (Sharma et al. , 2022). Using spatial
statistical techniques, seismologists can gain insight into earthquake clusters, fault plane
behavior, and seismic hazard analysis. This knowledge helps to better understand the
complexity, occurrence patterns and behavior of earthquakes for successful risk reduction
https://earthquake.usgs.gov/.

2 Earthquake in Damavand with a Magnitude of 5.1

A fairly strong earthquake shook the city of Damavand and its surrounding villages in
Tehran province on the morning of Friday, May 19, 2019. This event was well felt in the
city of Tehran and caused people to panic and leave the capital. The range of feelings of
this earthquake reached the provinces of Mazandaran, Semnan, Alborz and Qom. The
proximity of the epicenter of this earthquake to Tehran caused the attention of public opin-
ion and media to this earthquake and the fault that caused it. According to the institute’s
report, the magnitude of this earthquake was at a depth of 7 kilometers and its epicenter
was located near Masha village in the north of Damavand city. The National Earthquake
Accelerometer Network recorded this earthquake in more than 40 accelerometer stations
in Tehran, Semnan, Mazandaran and Qom provinces. The maximum acceleration due to
the event of this earthquake at the station of Rudhen was around 120 cm/s2 (Figure 1)
https://earthquake.usgs.gov.

3 Method

In the new approach presented here, an automatic method has been used instead of human
visual judgment. First, the events are entered into a 3D modeling computer software

https://earthquake.usgs.gov/
https://earthquake.usgs.gov


67 Pourbeyranvand, S.

Figure 1: Earthquake shake map.

environment. A direct plane is then fitted to the data points in 3D space. In fact, a
surface is created using the spatial position of the hypocenter of the earthquake, and then a
planar surface is installed obliquely on the selected surface. The result of this quantitative
approach is expected to be closer to reality compared to the previous qualitative method
that used human visual perception instead of a mathematical description of the geometric
features of the desired page. The hypocentral locations of the earthquakes can be seen in
Figure 2a. A single seismic event is isolated from other events. The plane corresponding to
the data after removing this outlier event is shown in Figure 2b. According to the higher
accuracy of the hypocentral location of the events after the re-location of the earthquakes
(Figure 2c.), the resulting plane is expected to be closer to reality.

The characteristics of the extracted fault planes in each of the three modes above are
given in Table 1 and displayed in Figure 3.

Table 1: Geometrical description of the fault plane.

No. strike dip
1 277.42 88.6 1
2 278.48 81.61
3 279.21 89.81

In Figure 4, surfaces are created using spatial position plates of seismic events for
the three discussed modes, and then a flat plate is fitted to these surfaces. This plane
shows the same geometrical character as the actual fault page. The difference between the
azimuth or alignment of the fault planes calculated by different research centers (Table
2) and this study is less than 15 degrees, which can be considered within the range of
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(a) (b) (c)

Figure 2: Fitting a plane to the spatial data of aftershock events (a), Fitting a plane to
the same data after removing outliers (b) and Fitting a plane to relocated events (c). top:
the spatial position of the data and fitting a plane to them, middle: the cross-section of
the events, bottom: the position of the created plane according to the faults in the area.

.

uncertainty of the focal mechanism data and is therefore acceptable. But the difference
between the slopes of the fault planes among different studies reaches more than 37 degrees
and seems quite variable. The observed differences are shown in Figure 5. The slope of
the fault plane determined in this study is close to the result obtained by GFZ.

Table 2: Characteristics of the fault plane calculated for the earthquake in this study,
Iranian Seismological Research Center, German Center for Geosciences and GCMT.

No. Date Time Lat. Lon. Depth Mag. S D
New Method 20200507 201821 35.777 52.041 12.1 5.1 (MI) 86.67 278.37

IRSC 20200507 201821 35.776 52.046 11.16 (centroid) 4.9 (Mn) 52 284
GFZ 20200507 201821 35.700 52.040 16 (centroid) 4.9 Mw 86 96

GCMT 20200507 201821 35.750 52.100 27 (centroid) 5 Mw 68 292

4 Calculation of earthquake focal mechanism

The focal mechanism of the above earthquake has been calculated in various international
authorities. For example, the GCMT report about this earthquake in the study area is
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Figure 3: Fitting a plane to the spatial data of aftershock events, top: the spatial position
of the data and fitting a plane to them, middle: the cross-section of the events, bottom:
the position of the planes created according to the faults in the area.

presented in Figure 6. As can be seen in this table, the focal mechanism calculated for this
earthquake has a dominant strike-slip movement with a dip-slip component. Therefore,
the proposed fault plane shows a good agreement with the trend of the faults in the region.
Also, the focal mechanism calculated for this earthquake in this study is in accordance
with the result announced by GFZ.

5 Conclusion

Using the proposed method, the geometrical characteristics of the fault plane were cal-
culated with acceptable accuracy. This fault plane is in accordance with the result an-
nounced by the GFZ and is consistent with the trend of the faults in the region. Con-
sidering the novelty of the proposed method, it is necessary to study more datasets with
higher accuracy to implement the method and validate the results.
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Figure 4: Fitting a plane to the spatial data of aftershock events, top: the spatial position
of the data and fitting a plane to them, middle: the cross-section of the events, bottom:
the position of the planes created according to the faults in the area.
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Figure 5: Fitting a plane to the spatial data of aftershock events, top: the spatial position
of the data and fitting a plane to them, middle: the cross-section of the events, bottom:
the position of the planes created according to the faults in the area.

Figure 6: Fitting a plane to the spatial data of aftershock events, top: the spatial position
of the data and fitting a plane to them, middle: the cross-section of the events, bottom:
the position of the planes created according to the faults in the area.
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Abstract:
This study utilizes Bayesian kriging regression to predict damage in earthquake-affected

areas. This approach accounts for the spatial correlation between building damage and
ensures that the predicted values remain within an acceptable range. It is also well-suited
for handling damage data with measurement errors. These are aspects that are often
overlooked in earthquake studies. The performance of the Bayesian kriging regression
was compared with that of regression kriging and probit regression using both simulated
and actual datasets from the Sarpol-e Zahab earthquake. The results showed that the
Bayesian kriging regression model provided superior predictions of the damage ratio com-
pared to the other models, exhibiting lower bias.

Keywords: Earthquake damage, Bayesian approach, Spatial correlation, Probit model.
Mathematics Subject Classification (2010): 62M30, 62H30, 62N05.

1 Introduction

Acquiring information on building damage is vital for effective crisis management in the
aftermath of an earthquake. Numerous studies have employed spatial regression models,
utilizing field-based data, to gather this crucial information. A kriging regression model,
proposed by Lallemant and Kiremidjian (2013) leverages both remote-sensing and field-
based data to predict damage. This model was later expanded by Loos et al. (2020)
to incorporate multiple sources of damage data. Despite the ability of the model to
consider the spatial correlation of building damage, thereby enhancing prediction accuracy
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beyond that of traditional regression models, it does not conform to the permissible range.
Consequently, the predicted damage could potentially be negative or surpass acceptable
values. The current study employed a Bayesian Kriging Regression (BKR) methodology as
part of a framework proposed to predict damage ratios within acceptable limits in regions
affected by earthquakes. This innovative approach not only takes into account the spatial
correlation of building damage but also enables damage prediction based on a small sample
size with measurement error using a Bayesian approach. This method proves to be timely,
cost-effective, and accurate, making it an invaluable tool in the crisis management process
following the occurrence of catastrophic events.The methodology section encompasses
three predictive models for damage: Probit Regression (PR), Regression Kriging (RK),
and BKR. Following this, both simulated and actual datasets from the Sarpol-e Zahab
earthquake are presented to evaluate the effectiveness of these models. The final section
offers a comprehensive conclusion, summarizing the key findings of the research.

2 Methodology

2.1 Probit regression

PR is a GLM with a probit link function that is frequently used in traditional regression
models for predicting post-earthquake damage. In this model, the number of damaged
buildings, Z, out of n buildings is distributed according to the binomial distribution given
by:

f(Z;µ) =
(
n

Z

)
µZ(1 − µ)n−Z (2.1)

where µ is the damage ratio (the number of damaged buildings divided by the total number
of buildings). In the PR model, the damage ratio is connected to a linear predictor through
the probit link function as (Dobson and Barnett , 2018):

Φ−1(µ) = β0 + β1 log(im) (2.2)

The link function Φ−1 is the inverse of the cumulative distribution function of the standard
normal distribution. log(.) represents the natural logarithm. im is the intensity measure.
β0 and β1 are the regression parameters that can be determined using the Maximum
Likelihood Estimation (MLE) approach (Baker , 2015).
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2.2 Regression kriging

PR predicts the damage ratio under the assumption that the response variable is inde-
pendent, despite the fact that the damage ratio exhibits spatial correlation (Lallemant
and Kiremidjian , 2013). To address this, Loos et al. (2020) utilized RK to predict the
damage ratio. The KR model introduces a residual term to the damage ratio predicted
by the PR model. In this context, the damage ratio predicted by PR is referred to as
drift. The KR model makes separate predictions for drift and residuals, and subsequently
integrates them to generate a prediction for damage ratio D(s0) at coordinate s0 as:

D(s0) = µ(s0) + e(s0) (2.3)

where the drift, µ(s0), is obtained by the PR and the residual, e(s0), at coordinate s0 is
acquired by ordinary kriging. Therefore, equation (2.3) can be rewritten as:

D(s0) = Φ(β0 + β1 log(im(s0)) +
m∑

i=1
αie(si) (2.4)

where e(si) is the residual at sample site s0, m is the number of sample sites and αi is
the kriging weight at site s0 that minimizes prediction error. In the calculation of αi,
semivariogram γ(hij) is defined to consider the spatial correlation between points i and j
which can be obtained as:

γ(hij) = σ2[1 − exp(−∥hij∥
b

)] (2.5)

where hij represents the ordinary Euclidean distance norm between sites i and j, σ2 is
known as sill and shows the variance of residuals and b is the range of the model (a
distance beyond which e(si) and e(sj) are considered uncorrelated).

2.3 Bayesian kriging regression

The RK leads to negative values and more than one value for the damage ratio, both of
which are unacceptable. Therefore, the current study proposes BKR, in which a spatial
residual term is added to the linear predictor of the PR model that is expressed as:

Φ−1(D(s0)) = β0 + β1 log(im(s0)) + e(s0) (2.6)

where D(s0) is the predicted damage ratio at site s0, and im(s0) is the earthquake intensity
measure at site s0. e(s0) is a residual term at point s0 derived from a Gaussian random
field with an m-by-1 zero-mean matrix and an m-by-m covariance matrix Q, and the
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covariance matrix Q is obtained as:

Q =


C(h11) . . . C(h1m)

... . . . ...
C(h11) . . . C(h1m)

 (2.7)

where C(.) is the covariogram. The relationship between the covariogram and semivari-
ogram can be expressed as:

γ(h) = C(0) − C(h) (2.8)

Using Bayesian inference, the predictive distribution for the BKR model can be deter-
mined as:

π(Z(s0)|Z(s),n(s), im(s), n(s0), im(s0)) ∝∫
p(Z(s0)|Z(s), n(s0), im(s0), ηηη)π(ηηη|Z(s),n(s), im(s))dηηη (2.9)

where Z(s), n(s) and im(s) are vectors representing the damaged buildings, the total
number of buildings and the intensity measure at m observed site, respectively. Thre
vector of model parameters is denoted as ηηη = (β0, β1, θ, τ), where θ = 1/b and τ = 1/σ2

(Ribeiro and Diggle , 2010), p(Z(s0)|Z(s), n(s0), im(s0), ηηη) is the conditional binomial
distribution and π(ηηη|Z(s),n(s), im(s)) is the posterior distribution of model parameters.
To completely determine the prior distributions of parameters, the current study uses
the empirical Bayes approach to estimate the hyper-parameters of the prior distribution
from the data. As can be seen, the complexity of the posterior distributions of equation
(2.9) precludes analytical posterior inferences about the interested parameters. Therefore,
a Markov Chain Monte Carlo (MCMC) method should be employed to estimate the
parameters via samples obtained from the posterior distribution. In this direction, a
Gibbs sampler algorithm can be used to sample from the posterior distribution (S.Geman
and Geman , 1984).

3 Material

The proposed BKR approach was evaluated using both simulated and actual datasets
from the Sarpol-e Zahab earthquake, which are described below.
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3.1 Generating the datasets of the damage data

The simulated dataset incorporated the earthquake Intensity Measure (IM), along with
the total number of buildings and the number of damaged buildings in the areas. A
synthetic random field, representing the spatial distribution of the earthquake IM in
terms of Sa(T=0.5s), was generated over a 30 km by 20 km area. This was based on
a hypothetical M7.3 earthquake event (Figure 1). See (Abbasnejadfard et al. , 2020)
for other characteristics of the source and site. Spatially correlated random numbers,
e(s) ∼ N(0,Q), were produced following a normal distribution. The covariance matrix of
Q was calculated using the covariogram function with σ2 = 2 and θ = 0.1. The damage
ratio was calculated based on regression parameters of β0 = 1 and β1 = 2 and other
variables were defined using equation (2.6).

3.2 Actual data from the Sarpol-e Zahab earthquake

The actual datasets included the earthquake IM, along with the total number of buildings
and the number of damaged buildings in Kermanshah province, Iran. The shake map of Sa
(T=0.3 s) was acquired from the United States Geological Survey (2017) and is depicted
in Figure 1. The damage ratios were obtained using the damaged buildings (Management
and Planning Organization , 2018) and the total number of buildings (Statistical Center
of Iran , 2016).

Figure 1: Earthquake intensity measures.

4 Results
The BKR model has been compared with the other models. For this purpose, the regres-
sion parameters of β0 and β1 were estimated using the MLE method, and the correlation
parameters τ and θ were determined by fitting an exponential variogram for the PR and
RK. This was based on a sample size of 20 for simulated datasets and 65 for actual
datasets. For the BKR, the estimated regression parameters of β0 and β1, along with ex-
pert opinion, were used to determine the prior distributions of parameters. The estimated
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Table 1: Estimated parameters and prior distribution of parameters for models.

Simulation Actual
PR RK BKR PR RK BKR

β0 = 1.15 β0 = 1.15 β0 ∼ N(1.15, 10) β0 = 1.26 β0 = 1.26 β0 ∼ N(1.26, 10)
β1 = 1.76 β0 = 1.76 β1 ∼ N(1.76, 10) β1 = 1.53 β0 = 1.53 β1 ∼ N(1.53, 10)

b = 7.78 θ ∼ U(0.01, 1) b = 27.84 θ ∼ U(0.01, 0.5)
σ2 = 0.06 τ ∼ Ga(0.01, 0.01) σ2 = 0.3 τ ∼ Ga(0.01, 0.01)

N, U and Ga are normal, uniform and Gamma distribution, respectively.

parameters and prior distribution are reported in Table 1 for both simulated and actual
datasets. After obtaining the model parameters, the damage ratios were predicted for the
unsampled site in Figure 2. The analysis revealed that the damage ratios predicted by the

Figure 2: True and predicted damage ratios.

PR models for the simulated dataset significantly deviated from their true values. This
discrepancy arose because the PR model only incorporated the IM in its linear predictor,
causing the damage ratio predictions to cluster similarly to the IM pattern. In contrast,
the RK and BKR models obtained results that were closer to the true values. These
models could predict the true value based on limited samples and taking into account the
damage ratios of sampling buildings in the surrounding prediction area. They achieved
this by utilizing interpolation between observed damage and spatial correlation between
building damage. However, the RK model predicted multiple values for the damage ra-
tio, which were not acceptable. The occurrence of these unacceptable values increased
significantly in actual data, likely due to measurement errors in damage data. But the
BKR maintained superior prediction performance compared to the RK because it used a
Bayesian approach.
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5 Sensitivity analyses

To ensure the superiority of the BKR model compared to the other models, the bias of
prediction across all sites is calculated for 50 iterations as:

Bias = 1
Nall

Nall∑
site

(D̂site −Dsite) (5.1)

where Nall is the number of sites, D̂site is the predicted damage ratio and Dsite is the
true damage ratio at a specific site. Figure 3 illustrates the bias of the predicted damage
ratio for all prediction models over 50 iterations of sampling. The BKR model exhibit
lower bias and standard deviation compared to other models for both datasets. This is
because of the use of correlation parameters and interpolations between observed damage
in prediction. Furthermore, the bias of prediction for the RK model in the actual dataset
increased due to measurement errors in damage data compared to other models.

Figure 3: Distribution of Bias for predictions.

Conclusion

The current study employed a BKR approach as part of a proposed framework to predict
the damage ratio in earthquake-affected areas, taking into consideration the spatial cor-
relation of building damage and ensuring the values remain within an acceptable range.
The performance of this model was compared with other models using both simulated
and actual datasets. Both the RK and BKR models were able to account for the spatial
correlations between building damage, resulting in better predictions than the PR model.
However, as the measurement error increased, BKR outperformed RK, providing more
accurate predictions.
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Abstract:
This paper introduces a machine-learning model for predicting divorce case outcomes

in Iranian Judiciary Courts, leveraging various classification algorithms, including Naïve
Bayes, Multinomial Logistic Regression, kNN, Decision Tree, Random Forest, GraBoost,
AdaBoost, Neural Network, SGD, and SVM. It utilizes historical divorce case data and
socioeconomic indicators like literacy rate, urbanization rate, and employment status.
Comparative analysis reveals that the Random Forest classifier achieves the highest ac-
curacy. Additionally, the study highlights key factors linked to divorce cases in Iran,
including the population aged 15 and over, unemployment rate, urbanization rate, and
participation rate. These findings offer valuable insights for crafting more effective policies
and interventions to address the social and economic challenges associated with divorce
in Iran.
Keywords: Divorce Cases, Data Mining, Machine Learning Techniques, Iran, Judiciary.
Mathematics Subject Classification (2010): 62M30, 62H30, 62N05.

1 Introduction

In recent years, Iran has experienced a substantial increase in divorce rates, growing from
8.7 per 1,000 marriages in 2006 to 20.8 per 1,000 marriages in 2020, as reported by the
Statistical Center of Iran (2020). This surge has raised concerns among policymakers and
the broader society due to the significant social and economic consequences of divorce on
families and society at large. Accurate prediction of divorce trends within civil courts has
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become essential for anticipating the demand for legal services, resource allocation, policy
planning, and support program development for families navigating divorce. Predictive
modeling, utilizing machine learning techniques, offers a promising approach to forecast
divorce trends by considering a wide range of socioeconomic factors and identifying influ-
ential predictors. These insights are invaluable for informed policy decisions and tailored
interventions to assist at-risk families (Rosili et al. , 2021).

Machine learning algorithms, grounded in statistical and computational techniques,
excel in detecting patterns and relationships within extensive datasets, making predictions
based on historical data. In predicting divorce trends, these algorithms leverage historical
divorce rates and socioeconomic data to construct predictive models capable of foreseeing
future trends. Machine learning offers distinct advantages, including heightened accuracy
and the ability to handle large and intricate datasets, enabling the discovery of critical
predictors not readily apparent through traditional methods (Narendran et al. , 2021;
Sharma et al. , 2021).

In conclusion, the integration of machine learning into predictive modeling equips Ira-
nian civil courts, policymakers, and practitioners with insights into future divorce case
volumes, facilitating the development of more effective policies and interventions to ad-
dress the intricate social and economic challenges associated with divorce. The reviewed
literature underscores the multifaceted nature of divorce prediction, encompassing socioe-
conomic, demographic, and behavioral factors, and highlights the potential of machine
learning algorithms in enhancing prediction accuracy and informing decision-making in
this context.

2 Data and Methodology

Our study employs a comprehensive dataset comprising 49 features. By harnessing this
extensive dataset, our aim is to achieve precise forecasts of divorce case volumes in Iranian
Judiciary courts. Some of the features are unemployment rate, population aged 15 and
over, literacy rate in the population aged 6 and over, participation rate, number of cases
related to drugs, number of cases related to alcoholic beverages, number of cases related to
theft that require punishment, Gini coefficient - rural areas, Gini coefficient - urban areas,
consumer price index (= annual inflation rate) , gross domestic product (at market price
in billion rials), total added value of 18 sectors (at market price in billion rials), average
age of men’s first marriage, average age of women’s first marriage, share of provinces in
total migration, urbanization rate, and internet penetration rate for population aged 15
to 24. The dataset for this experiment includes 217 instances gathered from the Iranian
Statistics Center and the Judiciary Statistics and Information Technology Center. To
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provide more clarity, a new variable named ’Divorce Category’ was introduced. This
nominal variable, with values ’Low,’ ’Medium,’ and ’High,’ depends on the percentage
of divorce-related cases. If ’Divorce Court Cases’ is below 33%, it falls into the ’Low’
category; if it’s between 33% and 66%, it’s labeled ’Medium,’ and if it’s 66% or higher,
it’s categorized as ’High.’ Careful calculations were made for all 217 instances.

In this study, data mining is applied to classify divorce case levels using a subset of
high-level features to enhance classifier performance. Various machine learning techniques,
such as Neural Networks, Naïve Bayes, and Decision Trees, are employed to create pre-
dictive models for divorce cases based on socioeconomic factors. Metrics like AUC, CA,
F1, Precision, and Recall are used to assess model performance, with Orange software
facilitating implementation. The dataset is split into training and testing sets, and k-
fold cross-validation ensures model generalization. ROC curves help evaluate diagnostic
test accuracy in categorizing divorce levels, with a larger AUC indicating better discrim-
inative ability. The study’s model evaluation and selection process identifies the most
suitable machine learning technique for predicting divorce case volumes, complemented
by experiments with four feature selection algorithms to improve robustness.

3 Analysis and Performance Evaluation

3.1 Optimal Model Choice

Table 1 unveils a comprehensive ranking of our top-performing models, meticulously eval-
uated against essential metrics like AUC, CA, F1, precision, and recall. It also provides
insights into their performance across four distinct target classes: average over classes,
Low, Medium, and High. Intriguingly, when we scrutinize the AUC scores, the standout
performers on both training and test data emerge as Random Forest and Neural Net-
work. These models showcased exceptional predictive capabilities. However, the story
takes an interesting twist when we delve into CA, F1, Precision, and Recall. While Ad-
aBoost exhibits superior accuracy on training data when compared to Random Forest
and Neural Network, it’s the latter two that shine on the test data, signifying their robust
predictive prowess. This nuanced performance variation underscores the importance of a
comprehensive evaluation. Our findings also unveil that the ’High’ target class reaps the
most promising results, while ’Medium’ class encounters more challenges. Importantly,
there are no telltale signs of overfitting, as all models deliver consistent and reliable clas-
sification outcomes. In essence, our experiments confirm that all ten prediction models
demonstrate impressive performance, with AUC values consistently exceeding 0.88. This
robust performance reaffirms the potential of these models for accurate and dependable
predictions in divorce case classification.
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In the comprehensive evaluation of all models, it becomes apparent that the Random
Forest model and Neural Network consistently outperform their counterparts in accurately
predicting the classification of divorce cases within the Iranian Judiciary Courts.

3.2 Feature Subset Selection and Model Evaluation

In the course of model application, a series of experiments were conducted to identify
the most impactful feature sets. Testing encompassed a spectrum of outcomes, ranging
from individual high-impact features to sets of 49 features. This comprehensive analysis
leveraged five distinct feature selection algorithms, meticulously recording the ensuing
classification results.

In this subsection, our objective is to rank features by assigning scores based on
their correlation with the discrete target variable. We employed various internal scor-
ing methods, including information gain, chi-square, and others, to assess each feature’s
significance.

The resulting sequence of influential features, obtained through diverse feature selec-
tion methods, is presented in Figure 1, along with the algorithm-assigned scores. For
instance, according to the ReliefF algorithm, the foremost feature is identified as ”Popula-
tion aged 15 and over (rural - male),” while the least impactful feature based on the same
algorithm is ”Consumer price index.” Conversely, the Information Gini algorithm desig-
nates ”Population aged 15 and over (urban - female)” as the most potent feature, with
”Participation rate (rural - female)” having the least impact within the same algorithm.

Similarly, the Gain Ratio algorithm identifies ”Population aged 15 and over (urban -
female)” as the most influential feature, while deeming ”Participation rate (rural - female)”
as the least influential. Lastly, in accordance with the Chi-Square algorithm, the feature
”Population aged 15 and over (urban - female)” is ranked as the most effective, with
”Unemployment rate (urban - male and female)” being considered the least effective.

After identifying the sequences of impactful features, these attributes were subjected
to classification using a variety of algorithms. As inferred from subsection 5.1, it becomes
evident that both the random forest and neural network algorithms outperform the others
in terms of performance.

In the initial phase, employing the chi-square feature selection algorithm, we exclu-
sively utilized the first identified effective feature for modeling purposes, leveraging the
random forest and neural network algorithms. Subsequently, we assessed accuracy based
on the test data. This process was iterated for the first two features, followed by the first
three features, and so forth, until all the features were incorporated. The outcomes of
these evaluations are visually presented in Figure 2. It is notable that the highest suc-
cess rate was achieved with the Random Forest algorithm, boasting an AUC of 1. This
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Figure 1: Effective feature orders obtained according to different feature selection algo-
rithms

achievement was reached by utilizing the first 46 features. It becomes evident that the
chi-square algorithm’s initial 46 features, classified by the Random Forest algorithm, yield
the highest levels of AUC, CA, F1, Precision, and Recall.

3.3 Feature Importance Analysis

Feature importance is a pivotal component of data mining algorithms. It involves quan-
tifying the unique contribution of each feature to the predictive accuracy of the model.
This metric not only enhances our comprehension of the underlying data relationships
but also plays a pivotal role in feature selection. It enables us to pinpoint key attributes
that exert the most substantial influence on the model’s overall performance. Figure 3 il-
lustrates the outcomes of our feature importance assessment. In this analysis, our dataset
forms the bedrock for evaluating the significance of individual features in relation to pre-
dictive outcomes. By doing so, we effectively sever the inherent link between the feature
and the target variable, allowing us to gain insight into its genuine impact on prediction
accuracy. Based on the AUC, a standout feature emerges: the percentage of the urban
population aged 15 or above residing in the province. This feature exhibits a strong cor-
relation with the divorce rate, suggesting a direct impact of urbanization on divorce rates.
In essence, variations in divorce rates may be attributed to cultural disparities between
urban and rural lifestyles within the country. Shifting our focus to gender-related factors,



87 Tabrizi, E. and Farzammehr, M.

Figure 2: Feature count vs. AUC performance in Random Forest and Neural Network
algorithms: unveiling the impact of feature selection

provinces with a higher percentage of female residents tend to experience elevated divorce
rates. Among other influential attributes, noteworthy mentions include urban and rural
unemployment rates, as well as the literacy rate among rural women.

Conclusion
This paper conducts an extensive comparative analysis of ten classification algorithms,
encompassing Neural Network, Naïve Bayes, Multinomial Logistic Regression, AdaBoost,
GraBoost, Random Forest, Decision Tree, kNN, SGD, and SVM, for predicting the ’Di-
vorce Category’ attribute with labels ’Low’, ’Medium’, and ’High’. The experimental
results unambiguously reveal Random Forest and Neural Network as superior performers
among the algorithms when applied to the divorce dataset. This assertion is grounded in
rigorous evaluations employing 10-fold cross-validation. The implications of these findings
extend to law enforcement agencies, underscoring the potential advantages of leveraging
machine learning algorithms like Random Forest for effective divorce management. No-
tably, the utilization of feature selection algorithms demonstrates a notably positive and
favorable impact compared to employing all features. This observation holds particu-
lar significance, given the widespread adoption of numerous features in prior studies on
divorce case diagnosis. The challenge of identifying genuinely influential features has per-
sisted, and this study contributes significantly to addressing this issue. Future research
endeavors entail the application of spatiotemporal classification algorithms to the divorce
dataset, with a specific focus on evaluating prediction performance for Iranian provinces.
Additionally, exploring alternative techniques for feature selection and investigating their
effects on the prediction performance of different algorithms represents promising avenues
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Figure 3: Features importance based on AUC and CA scores in the Random Forest
algorithm.

for further exploration in this domain. While this study aimed to predict the volume of
court cases related to divorce using data mining models, the limited quantity of available
data may have influenced the precision of our models, particularly in predicting different
levels of divorce. To enhance the accuracy of such models for categorical variables with
multiple levels, future researchers should prioritize the management and collection of a
larger, more diverse dataset of historical divorce cases, encompassing a sufficient number
of cases for each level of the categorical variable. This approach will facilitate improved
model training and validation, ultimately leading to more precise predictions.
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Abstract:
Boosting algorithm is a learning method that overcomes the weaknesses of machine

learners. This method is used for classification and regression. This method reduces the
error by combining it in parallel or sequentially and correcting the classification. In this
paper, we proposed a boosting algorithm based on the maximum likelihood function for
variable selection in spatial regression models. We studied the performance of this algo-
rithm and compared it with usual variable selection methods using simulation studies.
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1 Introduction

The concept of boosting has been widely applied to various pattern classification problems
in machine learning. Schapire (1990) introduced boosting method as a general method
to combine multiple classifiers to improve the overall classification accuracy for almost
any type of learning algorithm. Schapire (1999) formulated the adaptive boosting as a
novel ensemble learning (model combination) algorithm. The first widely used boosting
algorithm is adaptive boosting, which successfully solves binary classification problems.
Buhlmann and Yu (2003) proposed L2 boosting that builds a linear model by minimizing
the L2 loss. The L2 boosting is computationally simple and successful if the learner is
sufficiently weak. Friedman (2001), introduced the gradient boosting machine. The
gradient boosting is a generalization of adaptive boosting and L2 boosting. The details
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of boosting for nonlinear time series models are discussed by Robinzonov et al. (2012).
They discussed two methods of component-wise boosting: linear weak learner and p-
spline weak learner. Audrino and Buhlmann (2016) discussed volatility estimation via
functional gradient descent for high-dimensional financial time series.

Model choice and variable selection are issues of significant concern in practical regres-
sion analysis. Model-based boosting is a tool to fit a statistical model while performing
variable selection simultaneously. Buhlmann and Hothorn (2007) proposed a boosting
algorithm for estimation and variable selection in regression models. Wolfson (2011) ob-
tained a modification of the standard boosting (or functional gradient descent) technique
for variable selection and prediction, which can be applied in high-dimensional settings
where inference for low-dimensional parameters would typically be based on estimating
equations.

In this paper, a boosting algorithm based on the maximum likelihood function is
proposed for variable selection in spatial regression models. The performance of this
algorithm has been compared with usual variable selection methods using simulation
studies. The remainder of the paper is organized as follows: In Section 2, the spatial
regression model is introduced. In Section 3, the boosting algorithm for spatial regression
models is given based on the model selection criteria, such as the Akaike information
criterion. In Section 4, the performance of the boosting algorithm is studied using criteria
such as the Akaike information criterion, the mean-squared error of the prediction and
the relative frequency of variable selection.

2 Spatial regression model

We start with the standard linear regression model

y = xβ + ϵ,

where y is an (n × 1) vector of observations on a dependent variable taken at each of
n locations, x is an (n × k) matrix of explanatory variables, β is an (k × 1) vector of
parameters, ϵ is an (n × 1) normally distributed vector of disturbances with zero mean,
fixed variance σ2 and identity matrix I.

We consider F (x) as the function of interest and minimize an objective function. If
we consider maximum likelihood estimation, the objective function C can be defined as
the log likelihood function of the regression model based on all training data as:

C(F (x)) =
n∑

i=1
L(yi;F (xi))
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where n is the number of training samples. The maximum likelihood estimator of the
unknown parameter β can be calculated as

β̂ = (X′X)−1X′
y.

We need to use a modified maximum likelihood method to get over the high-dimension
problem because the matrix (X′X) is not invertible, so the ordinary maximum likelihood
method falls down. The idea of boosting is to use only one explanatory variable at a time.
Since only one variable is used in one particular iteration, the matrix x′

jxj is a scalar and
thus invertible. Several alternative forms of spatial regression models use spatial weights
matrices to represent spatial processes. We consider the spatial error models. In spatial
error models, the spatial autocorrelation instead affects the covariance structure of the
random disturbance terms. Andrews (2005) suggested a theoretical framework based
on common shocks as a mechanism to motivate spatially correlated errors. Spatial error
autocorrelation is a particular case of a non-spherical error covariance matrix in which
the off-diagonal elements are non-zero, i.e., E[ϵϵ′ ] = Σ. The spatial covariance structure
can be obtained in several ways. One of the approaches obtains structure for the error
covariance matrix by specifying a spatial process for the random disturbance. The most
common choice is a spatial autoregressive process, or SAR:

y = xβ + ϵ

ϵ = λWϵ+ u, (2.1)

With a row-standardized spatial weights matrix (i.e., the weights standardized such that∑
j wij = 1,∀i), λ is the autoregressive parameter and u is an (n×1) normally distributed

vector of the error term, typically assumed to be i.i.d. So that the error variance-covariance
matrix follows as follows:

E[ϵϵ′ ] = σ2(I − λw)−1(I − λw
′)−1.

Using the standard result for a multivariate normal distribution and taking into account
the Jacobian term, the log-likelihood for the spatial error autocorrelation model follows
as follows:

L = −n

2
log(2π) − 1

2
log | Σθ | −(y − Xβ)′Σ−1

θ (y − Xβ)

where Σθ = σ2(I − λw)−1(I − λw
′)−1 and θ = (λ, σ2). So

β̂ = [X′(I − λ̂W )′(I − λ̂W )X]−1X′(I − λ̂W )′(I − λ̂W )y
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Unlike the time series counterpart, a consistent estimate for cannot be obtained from a
simple auxiliary regression. Still, the first-order condition must be solved explicitly by
numerical means.

3 Boosting in spatial regression model

In this section, we propose the boosting algorithm for variable selection in a spatial
regression model. The model (2.1) can be represented as

y = xβ + ϵ =
K∑

k=1
ckfk(x) + ϵ = FK(x) + ϵ,

ϵ = λWϵ+ u,

where K is the number of variables. At each stage of the boosting algorithm, a new
variable is added to the previous model with k−1 variable to grow into a new model with
k variable. The general procedure of the proposed boosting algorithm is described as

• Step 1: Initialize F0(x)

• Step 2: For m = 1 to M

{c∗
m, f

∗
m} = argmaxcm,fmC(Fm(x))

Continue to add the new variable?
Yes: Fm(x) = Fm−1(x) + c∗

mfm(x)
No, Go to Step 4

• Step 3: Go to Step 2

• Step 4: Output final FM(x) = ∑M
m=1 cmfm(x)

A new variable and its weight optimally, as in Step 2, is derived using the functional
gradient method, see Kim and Pavlovic (2007). When a new variable is added, hopefully,
it will increase the objective function concerning F as much as possible:

C(Fm−1(x) + cmfm(x)) > C(Fm−1(x))

From the functional Taylor expansion of C(Fm−1(x) + cmfm(x)) around cm = 0 we obtain

C(Fm−1(x) + cmfm(x)) = C(Fm−1(x)) + cm ⟨▽C(Fm−1(x)), fm(x)⟩ +O (||cmfm(x)||)
≈ C(Fm−1(x)) + cm ⟨▽C(Fm−1(x)), fm(x)⟩
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where ▽C(Fm−1(x)) = 1
Fm−1(x) and ⟨P,Q⟩ is a functional inner product space based on

an inner product between any two models P and Q using the available training sample
{x1, · · · ,xn} as

⟨P,Q⟩ = 1
n

n∑
i=1

P (xi)Q(xi).

Therefore basic idea of proposed boosting is to learn each fm(x) incrementally as:

f ∗
m(x) = argmaxfm ⟨▽C(Fm−1(x)), fm(x)⟩

= argmaxfm

n∑
i=1

fm(xi)
Fm−1(xi)

It shows that the new component fm(x) is estimated, where the objective function grows
the most. Also in Step 2, c∗

m can be obtained using

c∗
m = argmaxcmC(Fm−1(x) + cmfm(x))

4 Simulation Analysis

In this section, we examine by simulation the relative performance of the material pre-
sented so far in the paper. In particular, we examine the performance of the proposed
boosting algorithm for variable selection and estimation of spatial regression models. We
consider model

yi = 2 + 0.9x1,i + ϵi, i = 1, · · · , n
ϵi = 0.6

∑
j

wijϵj + ui (4.1)

as true model, where ui’s independently and identically distributed as N(0, 1). The ob-
servations are generated from true models, where x1,i’s are generated from Uniform dis-
tribution U(0, 1). We will ignore the true model and consider x1, x2, x3, x4 and x5 as ex-
planatory variables, where x1, x2, x3, x4 and x5, are generated from Uniform distribution,
U(0, 1), Normal distribution, N(0, 2), Gamma distribution, G(2, 5), Weibull distribution,
W (5, 3), and Uniform distribution, U(−2, 2), respectively. The fitted model results based
on the proposed boosting algorithm and maximum likelihood estimation, MLE, are pre-
sented in Table 1. Package ”spatial-reg” is used for maximum likelihood estimators. The
results show that the estimators obtained from the boosting algorithm and the maximum
likelihood method are the same. In other words, the boosting algorithm performs well in
variable selection.

Now, we study the case where the observations are generated from a spatial regression
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Table 1: The variable selection and parameter estimation for Model 4.1

n Method λ̂ B̂0 B̂1 µ̂ σ̂2 AIC
50 Boost 0.6773 2.1688 0.7902 -9.363e-18 0.86420 148.7749

MLE 0.6772 2.1688 0.7902 3.2423e-17 0.9807 148.7749
100 Boost 0.5260 1.7177 1.0397 -2.4333e-16 0.9160 290.5116

MLE 0.5260 1.7177 1.0397 -3.1452e-16 1.0054 290.5116
250 Boost 0.5294 1.8759 0.8259 -4.6129e-16 0.8474 682.3100

MLE 0.5293 1.8758 0.8258 -4.9408e-16 0.8736 682.3100
500 Boost 0.5462 1.9050 0.8442 -2.7104e-16 0.9184 1441.169

MLE 0.5461 1.9053 0.8441 -7.5387e-16 0.9323 1441.171
1000 Boost 0.5794 1.9957 0.8550 -1.1536e-15 0.9820 2832.276

MLE 0.5992 1.9957 0.8550 -1.2896 e-15 0.9722 2832.323

model as:

yi = 2 + 0.9x1,i + 0.4 ∗ x2,i + ϵi, i = 1, · · · , n
ϵi = 0.6

∑
j

wijϵj + ui (4.2)

where ui’s independently and identically distributed as N(0, 1). The results of the values
of estimated parameters based on the proposed boosting algorithm and MLE are presented
in Table 2. Table 2 shows that the proposed boosting algorithm performs well in variable
selection and estimation.

Table 2: The variable selection and parameter estimation for Model 4.2

n Method λ̂ B̂0 B̂1 B̂2 µ̂ σ̂2 AIC
50 Boost 0.5674 2.0603 0.8835 0.3319 5.8831e-17 0.8540 147.2651

MLE 0.5665 2.0766 0.8963 0.3278 -1.6815e-16 0.9821 150.2592
100 Boost 0.5856 2.0133 1.0154 0.3467 2.0122e-16 0.9023 288.8227

MLE 0.5812 2.0144 1.0159 0.3436 1.7589e-16 0.9998 292.2195
250 Boost 0.6238 2.0029 0.8618 0.3648 2.9725e-16 0.9563 569.9535

MLE 0.6462 2.0099 0.8599 0.3638 4.0032e-16 0.9873 574.3331
500 Boost 0.6175 1.9985 0.9245 0.3826 6.6389e-16 1.0090 1438.1950

MLE 0.6469 1.9073 0.9339 0.3761 5.9725e-16 1.0295 1442.7890
1000 Boost 0.6063 1.9993 0.8917 0.3968 -2.2106e-16 0.9915 2834.548

MLE 0.5974 1.9964 0.8836 0.4006 -2.0355e-16 0.9920 2838.6530

We perform 104 replications. The mean values of the Akaike information criterion,
AIC, mean-squared error of the prediction, MSEh, and the relative frequency, RF of
variable selection, are given in Table 3. The results of Table 3 are interesting. We observe
that the relative frequency of variable selection for multivariate spatial regression models
has decreased compared to univariate spatial regression models.

Discussion and Results

We proposed a boosting algorithm for variable selection in spatial regression models. In
each iteration, a new variable is added to the model according to an objective function in
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Table 3: The relative frequency of variable selection for Model 4.2

Model n MSEh AIC RF
2 50 0.0203 140.6722 0.9788
3 50 0.0740 139.8940 0.8449
2 100 0.0096 282.7290 0.9958
3 100 0.0595 281.8947 0.8736
2 250 0.0039 708.4117 0.9999
3 250 0.0041 707.5330 0.9092
2 500 0.0017 1416.9575 1.0000
3 500 0.0017 1416.9575 0.9794
2 1000 0.0016 2835.6664 1.0000
3 1000 0.0016 2835.6664 1.9920

order to maximize the objective function. In this paper, the likelihood function (Akaike
information criterion) is considered as the objective function. In other words, in each
iteration, a new variable is added to the model so that the likelihood function (Akaike
information criterion) of the new model increases (decreases) compared to the likelihood
function (Akaike information criterion) of the current model. The performance of the
proposed algorithm of variable selection in spatial regression models was evaluated using
simulated data. The simulation results show that the boosting algorithm performs well
in variable selection and estimation.
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